

APPENDICES

Table of Contents

- I. Henry County Moving Toward Vision Zero Resolution
- II. Descriptive Crash Analysis
- III. High Injury Network
- IV. High Risk Network
- V. Demographic Analysis
- VI. Plan and Policy Review
- VII. Project Corridor Studies Report
- VIII. Comprehensive Transportation Plan Evaluation
- IX. Policy Recommendations
- X. Complete Streets Policy

HENRY COUNTY MOVING TOWARD VISION ZERO RESOLUTION

HENRY COUNTY TRANSPORTATION SAFETY ACTION PLAN

Resolution 25- 882

Resolution of the Henry County Board of Commissioners to adopt the Henry County Moving Toward Vision Zero Commitment as outlined in the Henry County Transportation Safety Action Plan (TSAP); committing to a sixty-five percent (65%) reduction in injurious and fatal traffic crashes by December 31, 2050; adopting the Safe System Approach as the guiding paradigm towards achieving this safety commitment.

WHEREAS, Henry County, in partnership with the cities of Hampton, Locust Grove, McDonough, and Stockbridge, is dedicated to constructing and maintaining safe roadways for all transportation modes; and

WHEREAS, the Safe Streets and Roads for All (SS4A) grant program was created under the 2021 Bipartisan Infrastructure Law to allocate federal funds towards plans, demonstration projects, and projects that advance the U.S. Department of Transportation's (USDOT) National Roadway Safety Strategy (NRSS) and follow a Safe System Approach; and

WHEREAS, in 2023, Henry County was awarded \$200,000 in SS4A grant funding, with a \$9,800 each match from partner cities of Hampton, Locust Grove, McDonough, and Stockbridge, towards the development of a city-county joint Transportation Safety Action Plan (TSAP); and

WHEREAS, the NRSS is guided by a Safe System Approach, which recognizes that death and serious injuries are unacceptable, humans make mistakes, humans are vulnerable, responsibility for roadway safety is shared, safety is proactive, and redundancy is crucial; and

WHEREAS, the Safe System Approach is organized around objectives of safer people, safer roads, safer vehicles, safer speeds, and post-crash care; and

WHEREAS, the NRSS and related programs are working towards a future with zero roadway fatalities and serious injuries, otherwise known as Vision Zero; and

WHEREAS, Vision Zero is a global movement towards the elimination of fatal and injurious roadway crashes; and

WHEREAS, in the Atlanta Regional Commission's (ARC) 2022 Regional Safety Strategy, the ARC made a commitment towards achieving Vision Zero through a 5% annual reduction goal for all safety targets; and

WHEREAS, between 2020-2024, there were 768 fatal and serious injury (FSI) crashes in the county, and 290 of those crashes occurred on county-owned roadways; and

WHEREAS, according to 2025 guidance from USDOT, the cost per crash for serious injury crashes is \$1,254,700, and the cost per crash for fatalities is \$13,200,000, costing Henry County and its incorporated municipalities over \$2.7 billion over 5 years; and

WHEREAS, the proportion of FSI crashes for cyclists and pedestrians is greater in median and low disadvantage areas of the county; and

WHEREAS, crashes that result in death or serious injury are not inevitable and can be prevented by following the principles and objectives of the Safe System Approach to make roadways safer for all users; and

WHEREAS, crashes in Henry County necessitate a comprehensive and targeted approach to roadway planning, design, policy, enforcement, education, communication, and engagement to effectively address the problem described herein; and

WHEREAS, according to the Henry County Transportation Plan: 2022 Update, Henry County is committed to creating and maintaining a transportation system built on a foundation of safe, walkable communities while also providing biking and public transit connections; and

WHEREAS, the Henry County Complete Streets Policy, first recommended in the 2022 Transportation Plan, can be useful for implementing the TSAP's safety improvements efficiently and cost-effectively; and

WHEREAS, the TSAP presents in-depth guidance for Henry County and partner jurisdictions towards a total or significant reduction in fatal and injurious crashes; and

WHEREAS, the TSAP includes a commitment to achieving a significant reduction in traffic deaths for Henry County and its partner jurisdictions, as required by the Safe Streets and Roads for All program.

NOW, THEREFORE, BE IT RESOLVED, the Board of Commissioners of Henry County does hereby adopt the Moving Toward Vision Zero policy as outlined in the Henry County Transportation Safety Action Plan; and

BE IT FURTHER RESOLVED, the Board of Commissioners of Henry County commits to a sixty-five percent reduction in fatal and serious injury crashes on its roadways by December 31, 2050; and

BE IT FURTHER RESOLVED, that a sixty-five percent reduction in fatal and serious injury crashes could save Henry County at least \$1.7 billion over 5 years; and

BE IT FURTHER RESOLVED, Henry County encourages all partner jurisdictions to also adopt a commitment to Move Towards Zero through a total or significant reduction of fatal and serious injury crashes; and

BE IT FINALLY RESOLVED, the Board of Commissioners of Henry County shall follow the Safe System Approach as the guiding paradigm towards this safety goal.

This 3rd day of September 2025.

HENRY COUNTY BOARD OF COMMISSIONERS

BY:
Carlotta Harrell, Chair

ATTEST:

Stephanie Braun, County Clerk

DESCRIPTIVE CRASH ANALYSIS REPORT

**HENRY COUNTY
TRANSPORTATION SAFETY ACTION PLAN**

Table of Contents

Descriptive Crash Analysis Purpose	4
Data Sources	5
Geocoding Crash Data.....	5
Study Limitations	5
Summary of Key Findings	6
Crash Trends	7
Crashes by Severity and by Mode	7
Crashes by Year	9
Parties Involved.....	10
Parties by Age	10
Crash Causation	11
Crash Types.....	11
Cause of Crash	12
Driver Characteristics & Behaviors.....	16
Roadway Characteristics.....	17
Roadway Ownership	17
Crash Location	17
Posted Speed Limit	18
Traffic Volume	18
Environmental Characteristics.....	19
Time of Day.....	19
Time of Day, Day of Week	22
Lighting Conditions.....	23
Roadway Surface and Weather Conditions.....	24
Zoning and Land Use Context Characteristics	25
Zoning	25
Proximity to Parks and Open Space and Schools	25
Demographic Analysis.....	26
Environmental Justice Model	26

Disclaimers

Information contained in this document is for planning purposes and should not be used for final design of any project. All results, recommendations, concept drawings, cost opinions, and commentary contained herein are based on limited data and information and on existing conditions that are subject to change. Further analysis and engineering design are necessary prior to implementing any of the recommendations contained herein. Geographic and mapping information presented in this document is for informational purposes only, and is not suitable for legal, engineering, or surveying purposes. Data products presented herein are based on information collected at the time of preparation. Toole Design Group, LLC makes no warranties, expressed or implied, concerning the accuracy, completeness, or suitability of the underlying source data used in this analysis, or recommendations and conclusions derived therefrom.

Federal law 23 United States Code Section 409 governs use of the data in this report. Under this law, data maintained for purposes of evaluating potential highway safety enhancements "...shall not be subject to discovery or admitted into evidence in a federal or state court proceeding or considered for other purposes in any action for damages arising from any occurrence at a location mentioned or addressed in such reports, surveys, schedules, lists, or data." If you should attempt to use the information in this report in an action for damages against City, the State, or any other jurisdiction involved in the locations mentioned in the data, these entities expressly reserve the right, under Section 409, to object to the use of the data, including any opinions drawn from the data.

List of Abbreviations & Key Terms

AADT	Annual Average Daily Traffic
VPD	Vehicles Per Day
KABCO	Injury Severity Scale
FSI	Fatal or Serious Injury (K and A on the KABCO scale)
FI	Fatal and All Injuries (K, A, B and C on the KABCO scale)
FSI Rate	The percent of crashes that resulted in an FSI; calculated as [FSI Crashes] / [Total Number of Crashes]
GDOT	Georgia Department of Transportation
Vulnerable Roadway User	Pedestrian, bicyclist, or other Non-Automobile road user

Descriptive Crash Analysis Purpose

As a first step toward understanding the safety performance of a roadway network, it is important to perform a high-level descriptive crash analysis of the study area. This involves collecting and consolidating multiple years of historical crash data and then summarizing and visualizing it to identify notable patterns and valuable insights that may help guide future analyses and planning efforts.

In support of the **Henry County Transportation Safety Action Plan** (Henry County TSAP), Toole Design's analysts performed a comprehensive descriptive crash analysis summarized in the following sections of this document. The analysis, conducted for Henry County and its jurisdictions, includes the study period of 2019 through 2023 and utilizes crash data downloaded from the Georgia Department of Transportation (GDOT)'s AASHTOWare (formerly Numetric) Crash Query application.¹

The descriptive analysis was conducted for the full study area based on the provided data. The data was consolidated, processed, and contextualized before being used to perform the analysis. A series of high-level descriptive summaries, tables, and figures capture relationships between crash data, infrastructure data, and contextual variables. These tables explore overall crash trends and patterns that can guide future analyses, the development of new or revised agency policies, or the selection of countermeasures for project development.

¹ AASHTOWare Safety Portal, n.d. <https://gdot.aashtowaresafety.com/crash-query#/metrics>.

Data Sources

To support the descriptive crash analysis, the following data sources were identified by Toole Design or provided by Henry County:

Table 1 Data sources and consolidated data

Data Set	Data Source
Crash Data	GDOT Numetric Crash Query application
Population	U.S. Census Bureau
Zoning	Henry County
Schools	Henry County
Parks	Henry County
Street Centerline	Henry County
Environmental Justice Model	The Atlanta Regional Commission (ARC)

Geocoding Crash Data

Geocoded crash data are critical to understanding collision patterns. Crash reports completed by the police are the primary source of crash data. While this data only captures crashes reported to authorities, it is often the most complete data source and provides most of the details of a crash, such as the location of the collision and contributing factors of the crash.²

Study Limitations

The segment length and roadway characteristics are coded at the crash level without the corresponding segment layer. The project team was unable to normalize the roadway characteristics with segment length, including posted speed limit and traffic volume (AADT). For each crash record, person-, unit-, and vehicle-level data were combined to the crash level. For non-vehicular modes, the project team could not match the direction of travel and movement/location before the crash to the respective units involved.

The analysis was completed at a county level using available crash data pulled from the AASHTOware crash database. This represents the best available data but may not be comprehensive and acknowledges that crashes not reported nor shared with the state may not be included in this analysis.

Exposure Data by Mode

The analysis in this report does not adjust for motor vehicle, pedestrian, or bicyclist exposure rates based on volumes for these modes due to a lack of available data. Therefore, the results show crash events but not the frequency of crashes normalized by the level of traffic or volumes.

As an example, crashes involving a pedestrian are more common in daylight than in dark conditions. This does not mean that daylight conditions are inherently more dangerous than dark conditions. Rather, it indicates that people are more likely to walk in light conditions than in dark conditions.

² Stutts, J., & Hunter, W. (1998). Police reporting of pedestrians and bicyclists treated in hospital emergency rooms. *Transportation Research Record: Journal of the Transportation Research Board*, (1635), 88-92.

Summary of Key Findings

- **Years of Crash Data analyzed:** 2019 - 2023
- **Total Crashes:** 46,927
- **Total Injury Crashes:** 13,421
- **Total Fatal Crashes:** 150
- **Total Serious Injury Crashes:** 601
- **Total Fatal and Serious Injury (FSI) Crashes:** 751
- **Crashes by Year:** In 2021, Henry County experienced its highest crash total (11,040) and its highest count of FSI crashes (183) among all analyzed years.
- **Injury Severity:** An average of 30 crashes per year resulted in a death, and an average of 120 crashes resulted in a serious injury.
- **FSI Crashes by Mode:**
 - **Pedestrians:** There were 183 pedestrian-involved crashes in the years analyzed, and 55 of these resulted in a fatality or serious injury, which is **30% of all pedestrian-involved crashes.**
 - **Bicyclists:** There were 35 bicyclist-involved crashes in the years analyzed, and 8 of these resulted in an FSI, which is **23% of all bicyclist-involved crashes.**
 - **Motorcycles:** There were 420 motorcyclist-involved crashes in the years analyzed, and 96 of these resulted in an FSI, which is **23% of all motorcyclist-involved crashes.**
 - **Motor Vehicles:** There were 46,289 motor vehicle crashes over the five years, including 106 fatal and 487 serious injury crashes, which, combined, is **1.2% of all motor vehicle crashes.**
- **Leading Crash Types:** For FSI crashes, 42% involve a single vehicle (i.e., ran off the road, hit a fixed object, lost control due to weather conditions, etc.), followed by 28% involving an angle crash with another vehicle. Of all crashes, 41% involve a rear end collision, and 25% involve an angle crash.
- **Leading FSI Contributing Factors:** Driver lost control (39%), driver condition³ (9%), and failure to yield (7%) are the top three contributing factors for FSI crashes. Reckless driving and driver condition have high FSI rates (15% and 11%, respectively.)
- **Behavior factors:**
 - Crashes involving aggressive driving account for 21% of FSI crashes and have a higher FSI rate among all flagged behavior factors by over 6%.
 - Over 20% of FSI crashes involve young drivers aged 20 to 24.
- **Crash Location:** 54% of all crashes and nearly 60% of FSI crashes happened midblock (i.e., between adjacent intersections).
- **Environmental Characteristics:**
 - More crashes occurred during weekdays, whereas more FSI crashes occurred on weekends.
 - Over 48% of FSI crashes happened when the lighting condition was “dark.” Crashes that occurred under “dark and unlit” lighting conditions have the highest FSI rate (3%) among all lighting conditions.
- **Zoning:** Over half of FSI crashes (54%) were in or along the parcels zoned as Residential, and 32% of FSI crashes occurred in or along commercial parcels.
- **Proximity to Destinations:** 6% of FSI crashes happened within a quarter mile of parks and 3% within a quarter mile of schools.

³ If the Operator/Pedestrian Condition is Physical Impairment, Suspected Fatigued or Asleep, Emotional (depressed, angry, disturbed, etc.), or Suspected U.I. (Alcohol and/or Drugs) then the Contributing Factor is considered a Driver Condition

Crash Trends

Crashes by Severity and by Mode

Table 2 shows the crashes by severity in Henry County. There are a total of 46,927 crashes from 2019 to 2023. Of these, 150 crashes were fatal, and 601 crashes resulted in serious injuries, accounting for 1.6% of all crashes.

Table 2 Crashes by Severity, 2019-2023

INJURY SEVERITY	COUNT #	%
FATAL (K)	150	0.32
SERIOUS INJURY (A)	601	1.28
MINOR INJURY (B)	2,606	5.55
POSSIBLE INJURY (C)	10,214	21.77
NOT INJURED (O)	33,356	71.08
ALL SEVERITIES (KABCO)	46,927	100

Figure 1 shows crash share by mode of travel and severity. Overall, FSI crashes involving only motor vehicles account for 1.3% of all motor vehicle crashes, while pedestrian-involved FSI crashes account for 30% of all pedestrian crashes, as shown in Figure 2. This shows that pedestrians are more vulnerable and at higher risk when traveling in Henry County and reflects the tendency for crashes involving bicyclists, pedestrians, or motorcyclists to be more severe than vehicle-only crashes. Bicyclists and pedestrians are considered Vulnerable Road Users (VRU) because of the increased severity of crashes.

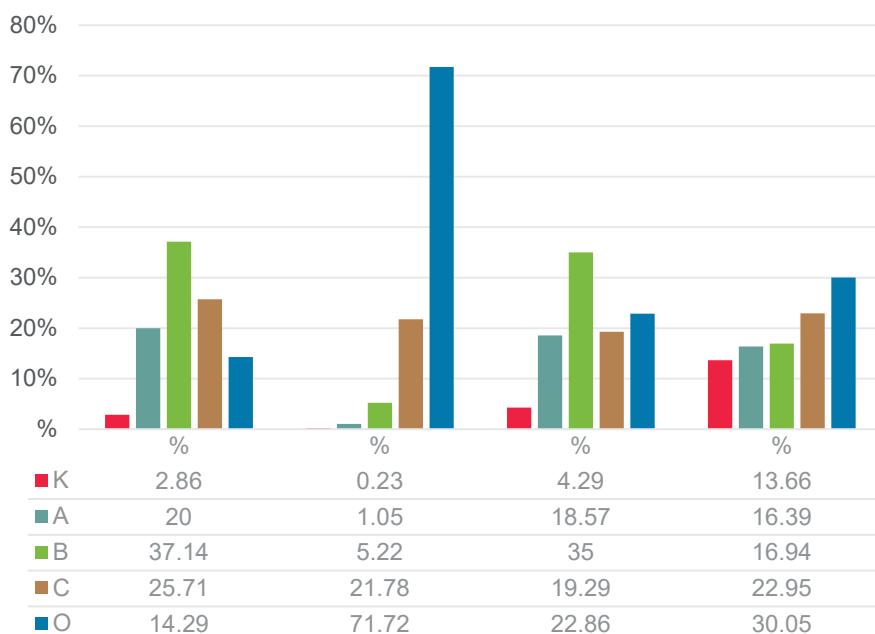
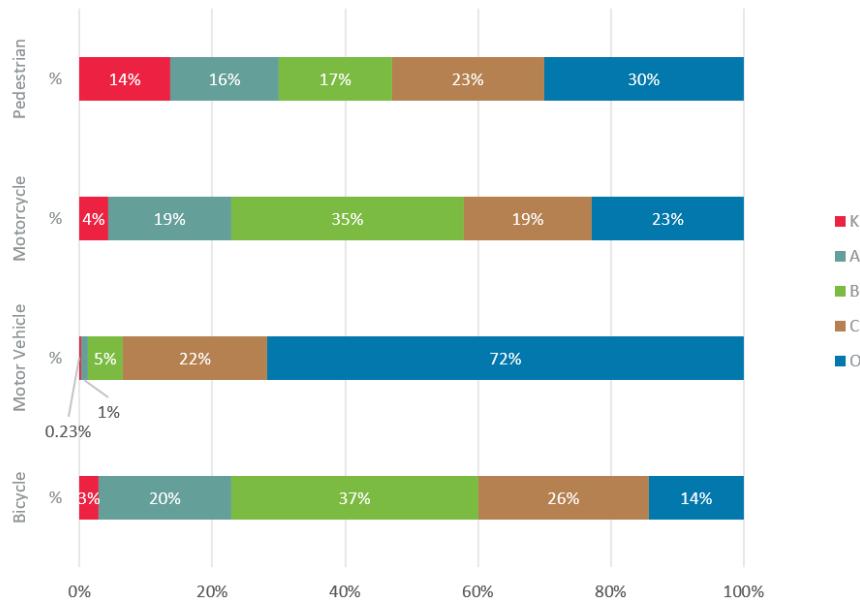
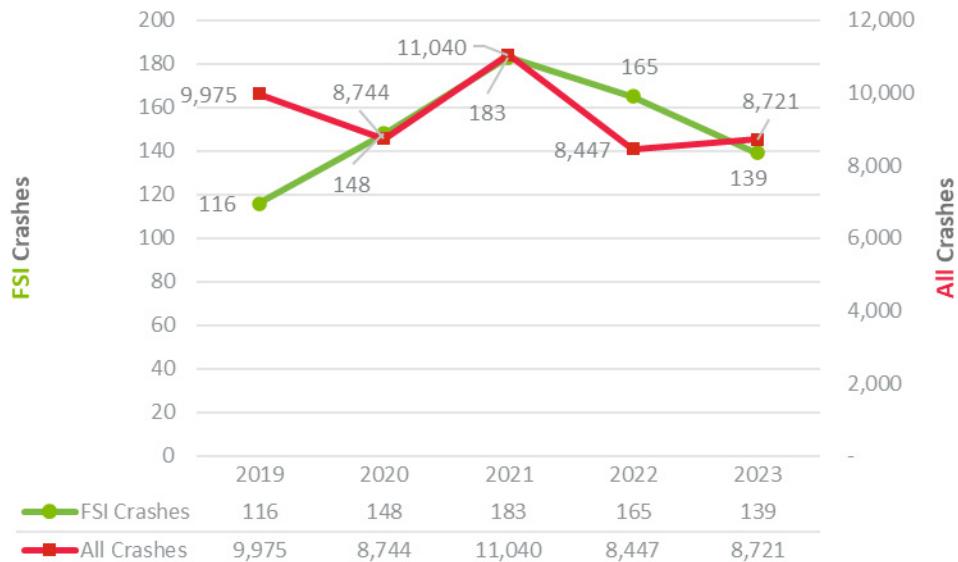



Figure 1 Crash Share by Mode and Severity, 2019-2023

Figure 2 Crash Share by Mode and Severity, 2019-2023

Table 3 shows crashes by jurisdiction. Overall, 68% of all crashes and 77% of FSI crashes happened in unincorporated areas under Henry County's jurisdiction. Among all cities in Henry County, the City of McDonough has the highest number of crashes (5,947) and FSI crashes (63) during the study period.


Table 3 Crashes by City, All Modes, 2019-2023

	#	%	FSI #	FSI %	FSI Rate
County	31,796	67.76	575	76.57	1.81%
Locust Grove	3,182	6.78	43	5.73	1.35
McDonough	5,947	12.67	63	8.39	1.06
Stockbridge	5,313	11.32	54	7.19	1.02
Hampton	619	1.32	15	2	2.42
Other	70	0.15	1	0.13	1.43
Total	46,927	100	751	100	1.6

Note: The 'Other' crashes are those in which information about jurisdiction was not reported. The crash location is determined based on the crash attributes in the crash report rather than the crash geospatial location.

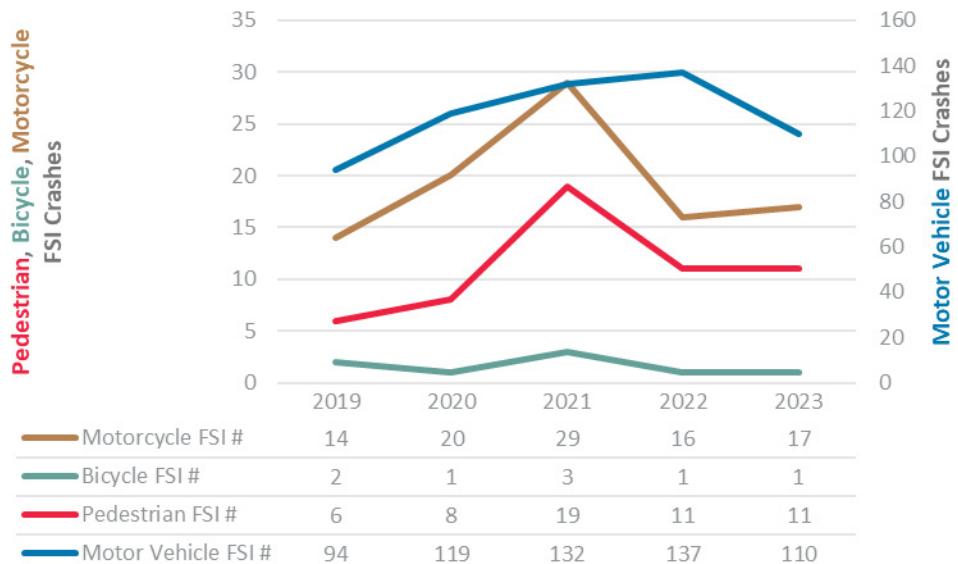

Crashes by Year

Figure 3 shows the number of all crashes and FSI crashes in Henry County by year. The number of all crashes fluctuates between 2019 to 2023. FSI crashes sharply increased from 2019 to 2021, peaked in 2021 over the 5-year period, and declined between 2021 to 2023.

Figure 3 FSI and All Crashes by Year, All Modes, 2019-2023

Figure 4 shows that pedestrian-, motorcyclist- and bicyclist-involved crashes share a similar trend as all crashes from 2022 to 2023, reaching their peak in 2021 and going downwards after. Motor vehicle crashes reached a peak in 2022. Pedestrians and bicyclists have experienced fewer crashes after 2021.

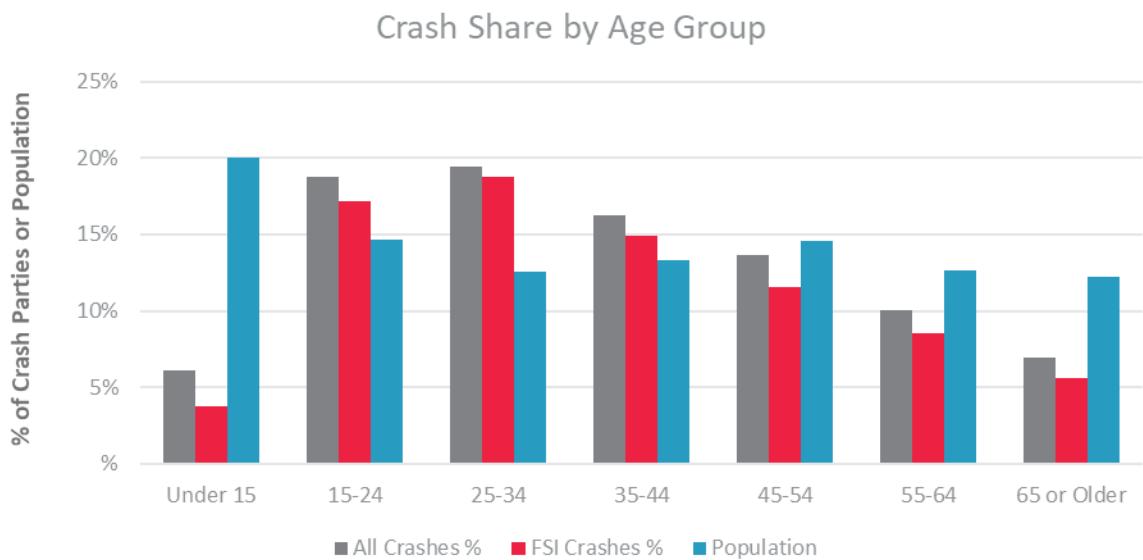


Figure 4 FSI Crashes by Year and Mode, 2019-2023

Parties Involved

Parties by Age

Over 54% of crash-involved drivers are in the age range of 15 to 44 years old, as shown in Figure 5. Younger drivers represent a large share of crashes. The age group of 15 to 24 has the **second-highest percentage of involvement in FSI crashes, representing 19% of all FSI crashes**. When comparing the age of drivers involved in crashes compared to their proportions of the population in Henry County⁴, drivers aged 15-34 are over-represented in crashes compared to the county-wide population distribution.

Figure 5 Crash Share by Age Group, 2019-2023

Note: Figure 5 summarizes the ages of the first two drivers involved in each crash, if available.

⁴ U.S. Census Bureau, 2019-2023 American Community Survey 5-Year Estimates

Crash Causation

Crash Types

Figure 6 summarizes crash patterns by crash types. For FSI crashes, 42% are single-vehicle crashes. For all crashes, rear end and angle crashes are the top two leading crash types, comprising 41% and 25% of all crashes, respectively. In addition, head-on crashes are more likely to result in FSI, as indicated by the high FSI rate of 8.8%, as shown in Table 4.

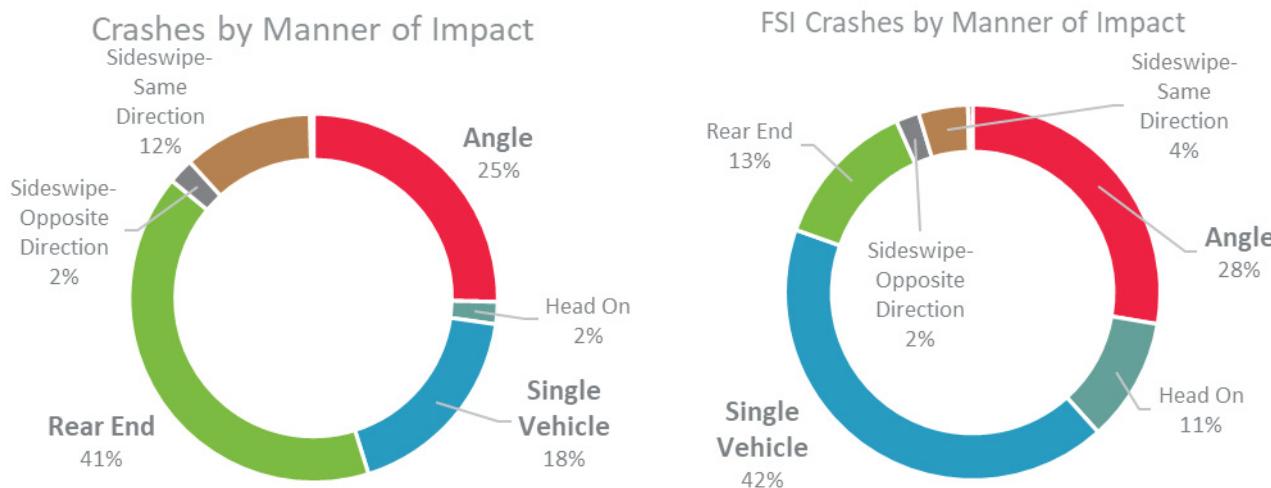
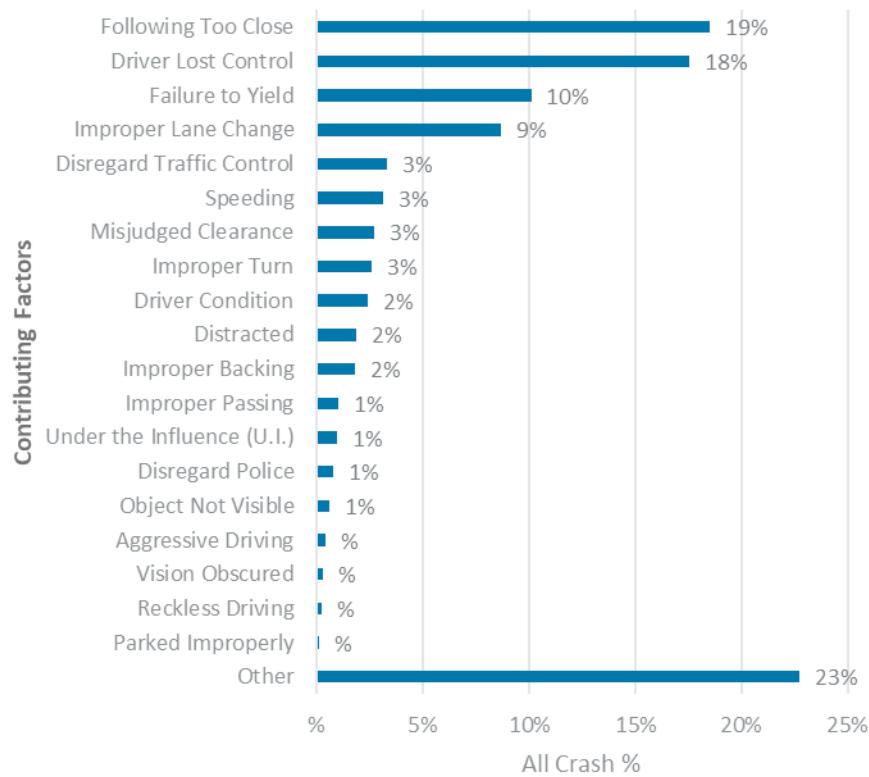
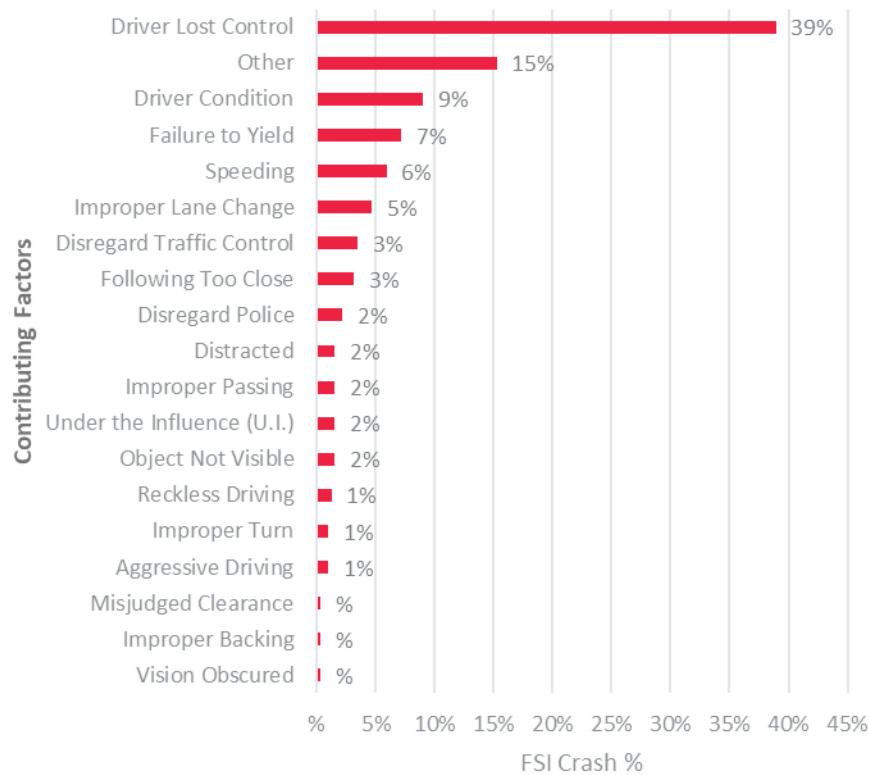


Figure 6 Crash Types, 2019-2023

Table 4 Crash Types by All Modes and Severity, 2019-2023


	#	%	FSI #	FSI %	FSI Rate
Angle	11,884	25.32	208	27.7	1.75
Head On	914	1.95	80	10.65	8.75
Single Vehicle	8,404	17.91	316	42.08	3.76
Rear End	19,161	40.83	97	12.92	0.51
Sideswipe-Opposite Direction	1,054	2.25	15	2	1.42
Sideswipe-Same Direction	5,367	11.44	32	4.26	0.6
Other/Unknown	143	0.3	3	0.4	2.1
Total	46,927	100	751	100	1.6

Cause of Crash


Figure 7 and Figure 8 show the share of crash contributing factors. Following too close (19%), driver lost control (18%), and failure to yield (10%) are the top 3 contributing factors for all crashes, whereas driver lost control (39%), driver condition⁵ (9%), and failure to yield (7%) are the top 3 contributing factors for FSI crashes. Following too close accounts for 19% of all crashes, corresponding to the high share of rear-end crashes (41%) mentioned above. Reckless driving and driver condition are more likely to result in FSI than other contributing factors based on the high FSI rate of 15% and 11%, respectively, as shown in Table 5.

⁵ If the Operator/Pedestrian Condition is Physical Impairment, Suspected Fatigued or Asleep, Emotional (depressed, angry, disturbed, etc.), or Suspected U.I. (Alcohol and/or Drugs) then the Contributing Factor is considered Driver Condition.

Figure 7 Top Cause of Crash by All Modes, All Crashes, 2019-2023 (Aggregated)

Figure 8 Top Cause of Crash by All Modes, FSI Crashes, 2019-2023 (Aggregated)

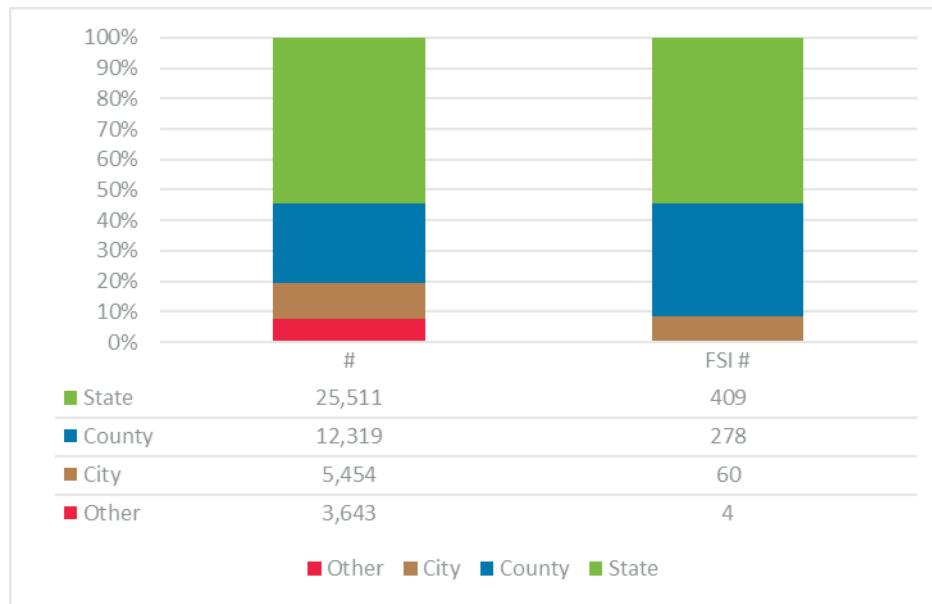
Table 5 Cause of Crash by All Modes and Severity, 2019-2023 (Aggregated)

	All		FI		FSI		FSI Rate
	#	%	#	%	#	%	
Total	10,462	100	3,315	100	321	100	
Following Too Close	1,940	18.54	642	19.37	10	3.12	0.52
Driver Lost Control	1,835	17.54	808	24.37	125	38.94	6.81
Failure to Yield	1,058	10.11	429	12.94	23	7.17	2.17
Improper Lane Change	907	8.67	205	6.18	15	4.67	1.65
Disregard Traffic Control	345	3.3	143	4.31	11	3.43	3.19
Speeding	330	3.15	125	3.77	19	5.92	5.76
Misjudged Clearance	286	2.73	31	0.94	1	0.31	0.35
Improper Turn	271	2.59	70	2.11	3	0.93	1.11
Driver Condition	254	2.43	140	4.22	29	9.03	11.42
Distracted	195	1.86	60	1.81	5	1.56	2.56
Improper Backing	192	1.84	13	0.39	1	0.31	0.52
Improper Passing	108	1.03	26	0.78	5	1.56	4.63
Under the Influence (U.I.)	104	0.99	40	1.21	5	1.56	4.81
Disregard Police	81	0.77	27	0.81	7	2.18	8.64
Object Not Visible	65	0.62	17	0.51	5	1.56	7.69
Aggressive Driving	42	0.4	13	0.39	3	0.93	7.14
Vision Obscured	33	0.32	8	0.24	1	0.31	3.03
Reckless Driving	27	0.26	15	0.45	4	1.25	14.81
Parked Improperly	11	0.11	1	0.03	0	0	0
Other	2,378	22.73	502	15.14	49	15.26	2.06

Note: This analysis only analyzes the contributing factors of the first party. Crash reports ask responding police officers to list the primary cause of a crash. Though multiple factors may contribute to a collision, responding police officers choose a primary cause or leading contributing factor based on what they see and interpret at the crash scene. This information provides insight into obvious events, behaviors, or factors that contributed to a crash, but it does not fully capture the full explanation of what led to a crash. For example, speeding can sometimes be underreported as a leading contributing factor because responding police officers may not have clear evidence that speeding occurred.

Driver Characteristics & Behaviors

Table 6 summarizes the crashes reported as aggressive driving, distracted driving, and young (20 to 24), teen (15 to 19), or older drivers (65 or older) involved. Aggressive driving has the highest FSI rate of over 6%, with 5% of all crashes and **21% of all FSI crashes involving aggressive driving**. Over 21% of all crashes and 20% of all FSI crashes involve young drivers aged 20 to 24. In comparison, fewer crashes and fewer FSI crashes involve teenage drivers aged 15 to 19 and older drivers over 65. These groups represent 13% and 14% of FSI crashes, respectively.


Table 6 Behavior-Related Crashes, All Modes, 2019-2023

	#	%	FSI #	FSI %	FSI Rate
Aggressive Driving	2,374	5.06	156	20.77	6.57
Distracted Driving	1,293	2.76	22	2.93	1.7
Young Driver Involved	9,955	21.21	151	20.11	1.52
Teen Driver Involved	6,770	14.43	100	13.32	1.48
Older Driver Involved	6,842	14.58	106	14.11	1.55
Total	4,976	100	113	100	2.27

Roadway Characteristics

Roadway Ownership

Figure 9 shows crash patterns by roadway ownership as documented in the crash data. State roads have a higher frequency of all crashes (54%) and FSI crashes (54%). Over 26% of all crashes and 37% of FSI crashes happened on county roads, indicating that crashes on county roadways are more likely to be FSI crashes.

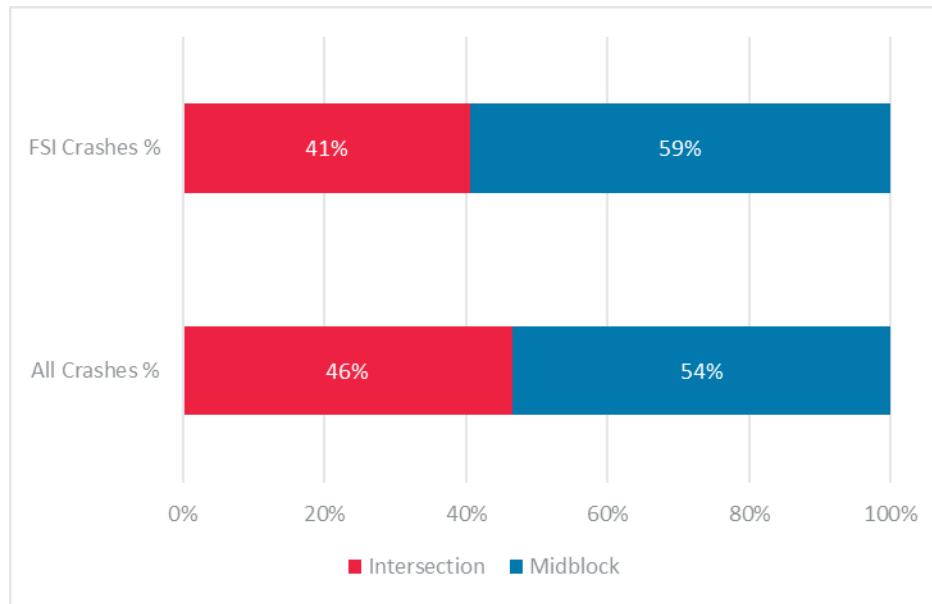


Figure 9 Crash by Roadway Ownership, All Modes, 2019-2023

Note: The 'Other' crashes are those in which information about roadway ownership was not reported.

Crash Location

Crashes occurred midblock in Henry County slightly more than at intersections, representing 54% of all crashes and nearly 60% of FSI crashes, as shown in Figure 10.

Figure 10 FSI and All Crashes by Location, All Modes, 2019-2023

Posted Speed Limit⁶

Table 7 Table 7 summarizes crash patterns by the posted speed limit reported. Over 44% of all crashes and 42% of FSI crashes happened on roadways with a 45 MPH posted speed limit. The FSI rate for crashes on roadways with 55 MPH or 60 MPH posted speed limits is over 3%, indicating a higher risk of FSI crashes on these roadways with higher speeds.

Table 7 Crashes by Posted Speed Limit, All Modes, 2019-2023

Speed Limit	#	%	FSI #	FSI %	FSI Rate
< 25	1,021	2.18	14	1.87	1.37
25	1,909	4.08	24	3.2	1.26
30	164	0.35	2	0.27	1.22
35	8,450	18.04	99	13.2	1.17
40	363	0.77	8	1.07	2.2
45	20,941	44.7	317	42.27	1.51
50	105	0.22	2	0.27	1.9
55	4,948	10.56	151	20.13	3.05
60	367	0.78	12	1.6	3.27
65+	8,575	18.31	121	16.13	1.41
Total	46,843	100	750	100	1.6

Traffic Volume⁷

Table 8 shows crash patterns by AADT. Among the crashes with documented AADT, 38% of all crashes and 43% of FSI crashes happened on roadways with AADT between 1,000 and 10,000.

Table 8 Crashes by Traffic Volume, All Modes, 2019-2023

Traffic Volume	#	%	FSI #	FSI %	FSI Rate
<1,000	183	0.42	5	0.67	2.73
1,000-10,000	16,228	37.5	319	42.7	1.97
10,000-15,000	8,858	20.47	167	22.36	1.89
15,000-30,000	9,080	20.98	126	16.87	1.39
30,000+	8,930	20.63	130	17.4	1.46
Total	43,279	100	747	100	1.73

⁶ For this memo, posted speed limit is assessed at the crash level not the roadway network level; the project team has not yet normalized crashes by roadway miles in each speed limit category.

⁷ The AADT information only exists at the crash level, not the roadway network level; the project team is unable to normalize crashes by roadway miles in each AADT category.

Environmental Characteristics

Time of Day

Figure 11 shows that the number of FSI and all crashes vary over a typical 24-hour period. FSI crashes occurred more frequently as the day progressed. FSI crashes were highest from 3 PM through the evening around dusk and into the night until around 3 AM. All crashes also occurred more frequently as the day progressed but increased sharply by midday, reached their highest rate at the PM peak hours and decreased afterward. Table 9 shows that dark conditions from 9 PM to 3 AM have a higher FSI rate of around 3 to 5%, indicating a higher tendency for FSI crashes during nighttime.

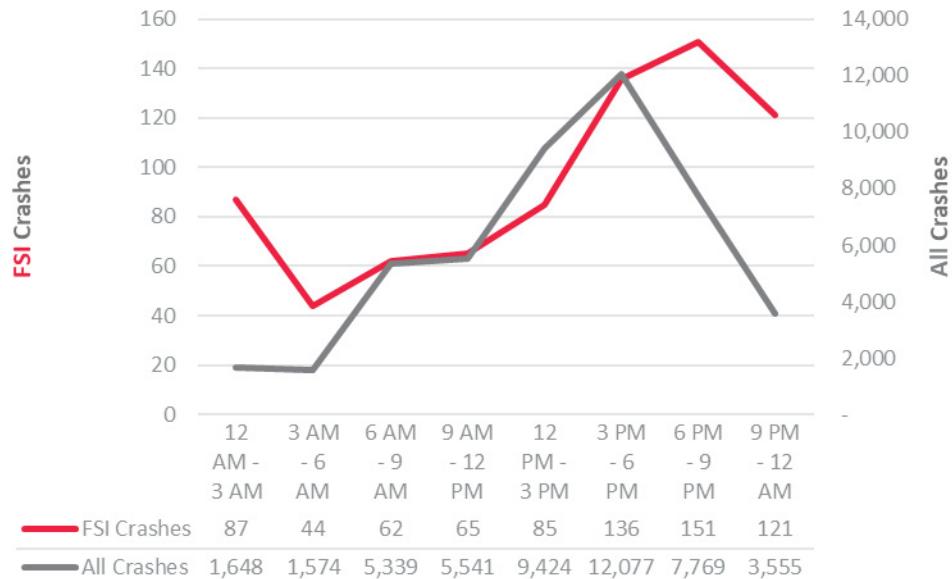
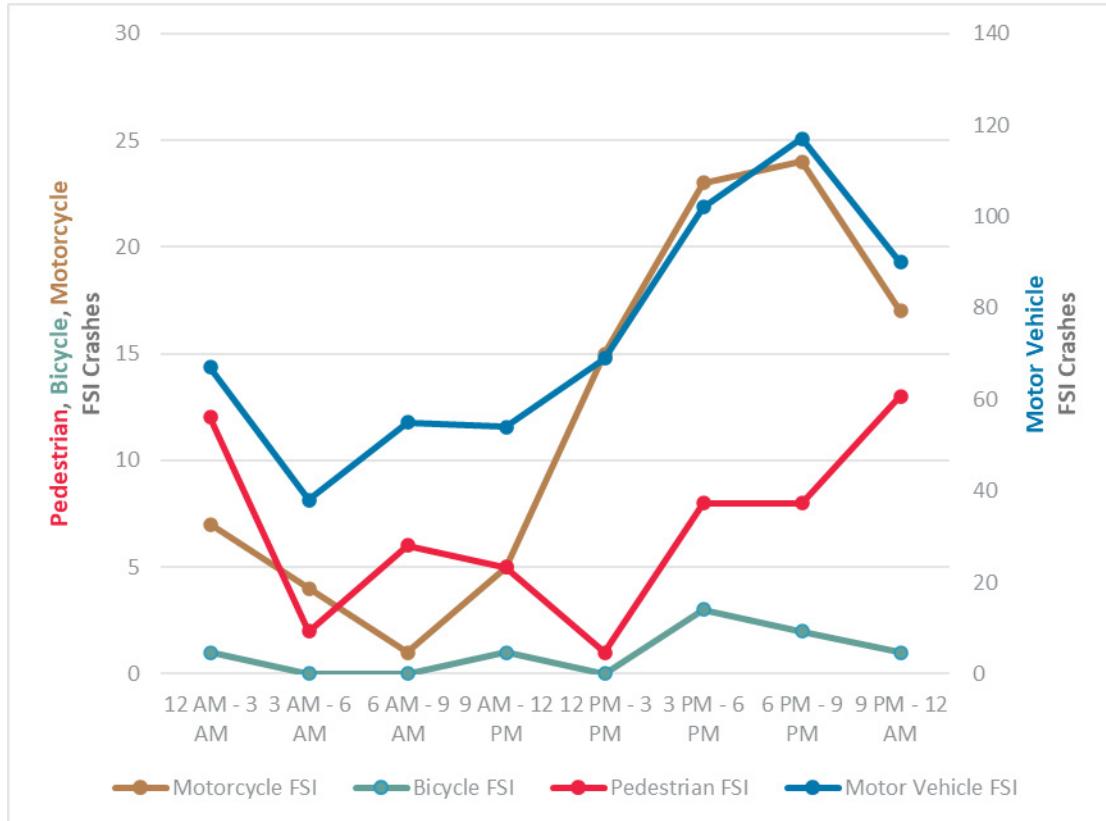



Figure 11 Crashes by Time of Day, All Modes, 2019-2023

Table 9 Crashes by Time of Day, All Modes, 2019-2023

	#	%	FSI #	FSI %	FSI Rate	
12 AM - 3 AM	1648	3.51	87	11.58	5.28	Dark Conditions
3 AM - 6 AM	1574	3.35				
6 AM - 9 AM	5339	11.38	62	8.26	1.16	AM Peak
9 AM - 12 PM	5541	11.81	65	8.66	1.17	Light Conditions
12 PM - 3 PM	9424	20.08				
3 PM - 6 PM	12077	25.74	136	18.11	1.13	PM Peak
6 PM - 9 PM	7769	16.56	151	20.11	1.94	Dark Conditions
9 PM - 12 AM	3555	7.58	121	16.11	3.4	
Total	46927	100	751	100	1.6	

Figure 12 breaks down the FSI crashes by mode and by time of day. Vehicle-only FSI crashes and motorcycle-involved crashes tend to rise after lunchtime, peak at dinnertime (6-9 PM), and decrease afterward until the morning rush hour (6-9 AM) the following day. Pedestrian-involved FSI crashes show a similar trend, although noon is when pedestrian FSI crashes are lowest. The rise in pedestrian crashes in the afternoon and midnight peak show that most pedestrian-involved FSI crashes happen during dark conditions.

Figure 12 Motor Vehicle, Pedestrian, Bicyclist, Motorcyclist FSI Crashes by Time of Day, 2019-2023

Table 10 indicates the crash frequencies by day of the week. More crashes occur on weekdays, with Fridays experiencing the greatest number of crashes for the week at 18%; however, over 36% of FSI crashes occur on weekends, corresponding with higher FSI rates.

Table 10 Crashes by Day of Week, All Modes, 2019-2023

	#	%	FSI #	FSI %	FSI Rate	
Mon	6,432	13.71	88	11.72	1.37	Weekday
Tue	6,869	14.64	87	11.58	1.27	
Wed	6,919	14.74	97	12.92	1.4	
Thu	7,311	15.58	100	13.32	1.37	
Fri	8,366	17.83	106	14.11	1.27	
Sat	6,385	13.61	142	18.91	2.22	Weekend
Sun	4,645	9.9	131	17.44	2.82	
Total	46,927	100	751	100	1.6	

Time of Day, Day of Week

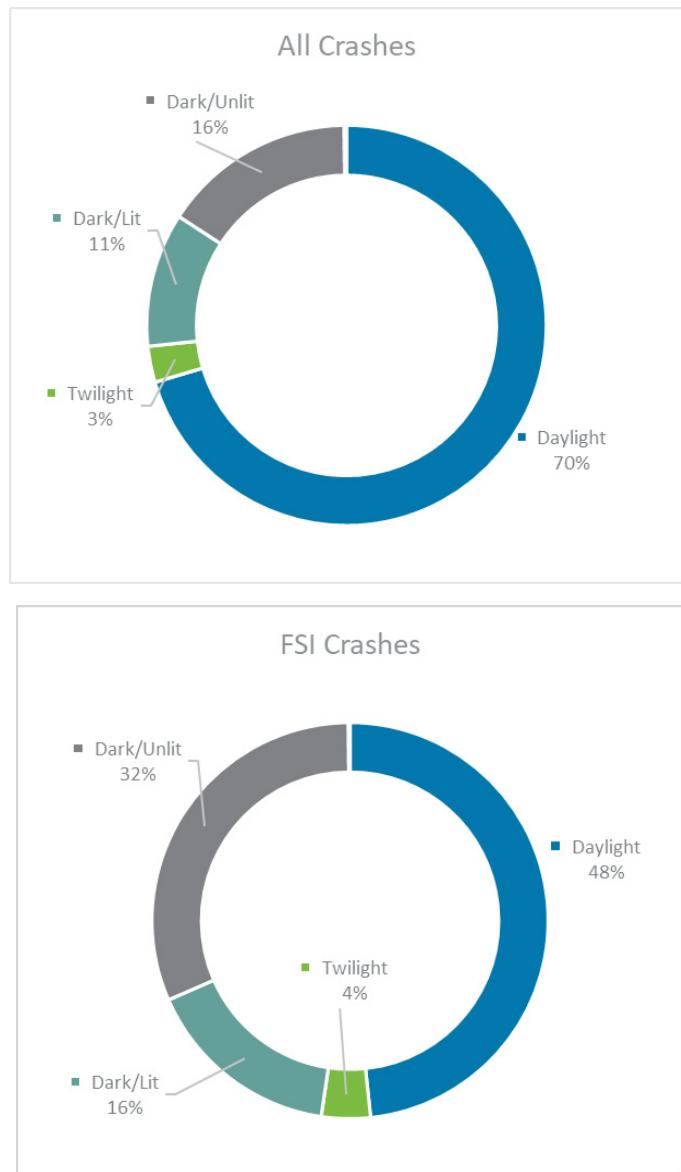
Table 11 and Table 12 summarize FSI and injury crash patterns by considering the day of the week and time of day together.

Friday PM peak hours (3 PM to 6 PM) have the highest FSI crashes across all timeframes. Fridays through Saturdays, FSI crashes increase during dark conditions. There is a greater risk of fatalities and serious injuries when traveling during Friday PM peak hours and late at night on weekends.

The time of day that injury crashes were most likely to occur was during peak PM hours from 3 PM to 6 PM, especially on weekdays, as shown in Table 12. This reflects the elevated traffic volume during these times, such as school traffic and commuters returning home.

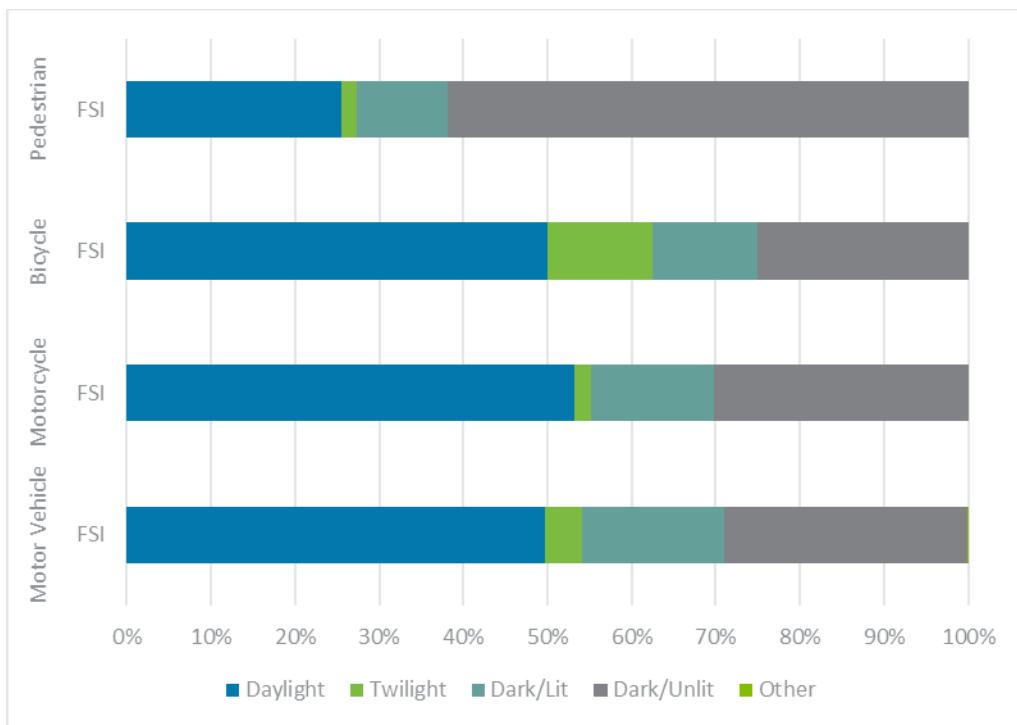
Table 11 FSI Crashes by Day of Week and Time of Day Heatmap, 2019-2023

	12 AM - 3 AM	3 AM - 6 AM	6 AM - 9 AM	9 AM - 12 PM	12 PM - 3 PM	3 PM - 6 PM	6 PM - 9 PM	9 PM - 12 AM	
Mon	5	4	9	9	18	15	15	13	Weekday
Tue	8	6	9	8	16	11	15	14	
Wed	10	6	12	8	6	12	29	14	
Thu	6	5	10	13	8	17	22	19	
Fri	10	6	5	8	6	33	19	19	
Sat	23	8	8	9	16	29	22	27	
Sun	25	9	9	10	15	19	29	15	
	Dark Conditions		AM Peak	Light Conditions		PM Peak	Dark Conditions		


Table 12 Injury Crashes by Day of Week and Time of Day Heatmap, 2019-2023

	12 AM - 3 AM	3 AM - 6 AM	6 AM - 9 AM	9 AM - 12 PM	12 PM - 3 PM	3 PM - 6 PM	6 PM - 9 PM	9 PM - 12 AM	
Mon	49	52	256	218	334	492	294	134	Weekday
Tue	54	65	261	275	365	480	309	147	
Wed	54	55	273	237	330	504	342	163	
Thu	60	63	284	246	372	552	337	165	
Fri	79	69	226	243	499	674	389	204	
Sat	117	66	88	256	430	427	331	200	
Sun	118	66	62	165	292	305	321	122	
	Dark Conditions		AM Peak	Light Conditions		PM Peak	Dark Conditions		

Lighting Conditions


Roadway lighting refers to whether a crash occurred during daylight or nighttime hours and whether streetlights lit the roadway during nighttime crashes. Proper lighting can dramatically increase motorist visibility, meaning nighttime crashes in unlighted conditions can be more common and severe, especially for VRUs.

As shown in Figure 13 below, 28% of all crashes happened during dark conditions, whereas 48% of FSI crashes happened during dark conditions. Crashes occurring under dark and unlit lighting conditions have the highest FSI rate at 3%.

Figure 13 FSI and All Crashes by Lighting Conditions, All Modes, 2019-2023

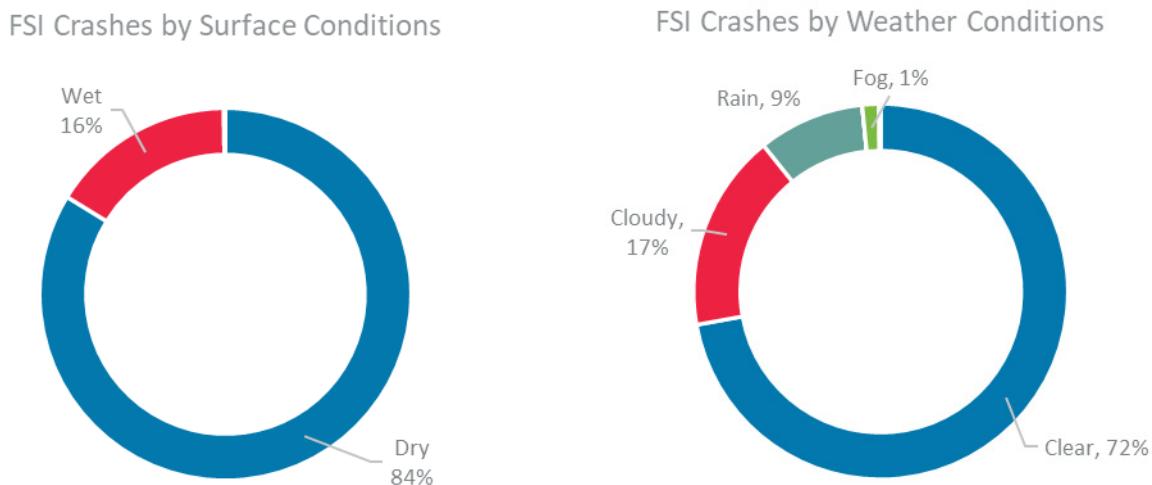

When breaking down crash data by mode and severity, shown in Figure 14, over 73% of pedestrian FSI crashes occurred under dark conditions, either lighted or unlighted conditions. Conversely, a greater share of FSI crashes for all other modes happened during the day.

Figure 14 FSI Crashes by Lighting Conditions and Modes, 2019-2023

Roadway Surface and Weather Conditions

Figure 15 shows that most FSI crashes occurred in dry road conditions (84%) and clear weather conditions (72%). Disproportionately more crashes of certain types occurred in adverse weather and road conditions. Crashes in wet roadway conditions accounted for 16% of FSI crashes, and the FSI rate was 1.65%. Over 28% of FSI crashes occurred in cloudy, rainy, and foggy weather conditions; foggy weather conditions had the highest FSI rate at 3.8%, showing a higher risk.

Figure 15 FSI Crashes by Roadway Surface and Weather Conditions, All Modes, 2019-2023

Zoning and Land Use Context Characteristics

Zoning

Table 13 summarizes crash patterns by zoning.⁸ Residential and Commercial areas have the most FSI crashes, with 54% and 32%, respectively. However, 85% of the study area in Henry County is zoned as Residential. When normalizing crashes by parcels per acre for each zoning category, we find that the Commercial areas had the highest crash density, with almost three crashes per acre. Notably, crashes in Residential and Mixed-use areas are more likely to result in an FSI, as both zoning types have an FSI rate of around 2.4%, underscoring the urgent need for countermeasures in Residential areas in Henry County.

Table 13 Crashes by Zoning, All Modes, 2019-2023

	#	%	FSI #	FSI %	FSI Rate	% of Area	Crash Per Acre	FSI Crash Per Acre
Commercial	22,956	48.92	239	31.82	1.04	4	2.93	0.0305
Residential	16,784	35.77	402	53.53	2.4	84.7	0.1	0.0024
Industrial	3,265	6.96	40	5.33	1.23	4.35	0.38	0.0047
Mixed-use	577	1.23	14	1.86	2.43	0.55	0.54	0.0131

Proximity to Parks and Open Space and Schools⁹

Table 14 summarizes the crashes by proximity to schools and parks. Only 6% of FSI crashes occurred within a quarter mile of parks, and only 3% were within a quarter mile of schools.

Table 14 Crash Share by Proximity (Quarter-Mile) to Key Destinations, All Modes, 2019-2023

	#	%	FSI #	FSI %	FSI Rate
Parks	3,313	7.06	46	6.13	1.39
Schools	2,043	4.35	24	3.2	1.17
Total	46,927	100	751	100	1.6

⁸ Zoning data was provided by Henry County. The project team grouped the zoning code by its first characters, where C represents Commercial, R represents Residential, M represents Industrial, MU represents Mixed-use, O represents Institutional, PD as Planned Development, and DT as Downtown. All crashes were labeled with the nearest parcel's zoning category. Note that not all the zoning categories are presented in the table.

⁹ All crashes were flagged for within a quarter mile of parks and schools based on the data from Henry County.

Demographic Analysis

Environmental Justice Model¹⁰

The Atlanta Regional Commission's (ARC) Environmental Justice Model focuses on racial minorities, ethnic minorities, and low-income populations, as these groups are considered to face the greatest inequality in the Atlanta region.

The project team has categorized these populations into five groups based on natural breaks:

- **High Advantage Area:** score below or equal to 3
- **Low Advantage Area:** score equal to 4
- **Median Area:** score greater than 4 and below or equal to 6
- **Low Disadvantage Area:** score greater than 6 and below or equal to 8
- **High Disadvantage Area:** score greater than 8

Note that none of the Census tracts in Henry County fall into the 'High Disadvantage Areas.'

Table 15 summarizes crashes by these Environmental Justice Model categories. Over 80% of all crashes and 76% of FSI crashes occurred in median and low disadvantage environmental justice areas.

Table 15 Crashes by Environmental Justice Model, All Modes, 2019-2023

	#	%	FSI #	FSI %	FSI Rate
High Advantage Areas	1,269	2.7	25	3.33	1.97
Low Advantage Areas	7,819	16.66	152	20.24	1.94
Median Areas	27,317	58.21	400	53.26	1.46
Low Disadvantage Areas	10,521	22.42	174	23.17	1.65
High Disadvantage Areas	-	-	-	-	-
Total	46,926	100	751	100	1.6

¹⁰ Equity Analyses Methodology by ARC, <arc-equity-methodology-june2019.pdf>

HIGH-INJURY NETWORK REPORT

**HENRY COUNTY
TRANSPORTATION SAFETY ACTION PLAN**

Contents

Introduction	4
Crash Data Sources	4
Development of the High-Injury Network.....	4
High-Injury Network Process	4
Sliding Window Analysis Methodology	5
High-Injury Network Thresholds.....	6
Analysis Results	6
High-Injury Network.....	6
All Modes Sliding Window Analysis	12
Modal Sliding Window Analyses	18

List of Abbreviations & Key Terms

AADT	Annual Average Daily Traffic
KABCO	Injury Severity Scale
FSI	Fatal or Serious Injury (K and A on the KABCO scale)
FI	Fatal and All Injuries (K, A, B and C on the KABCO scale)
GDOT	Georgia Department of Transportation
Vulnerable Roadway User	Pedestrian, Bicyclist, or other Non-Automobile road user

Introduction

Toole Design has prepared a High-Injury Network (HIN) for the Henry County Transportation Safety Action Plan (TSAP). The HIN identifies roadway segments where the greatest density of the most severe crashes have occurred over the past five years. The HIN is a foundational element of the TSAP and will inform priority project locations as well as policy and program recommendations in the TSAP.

This report describes the consultant team's crash data sources, methodologies, and thresholds for the development of the HIN. The report also includes maps of the HIN. **The development of this HIN emphasizes that the key goal of the TSAP is the eventual elimination of fatal and serious injury crashes; therefore the network is focused on these crash severities.**

Crash Data Sources

Crash data for the 5-year period of 2019-2023 was acquired from the Georgia Department of Transportation's (GDOT) AASHTOware (formerly Numetric) crash query application for Henry County. This analysis excludes interstate segments and crash points as those roads are owned, maintained, and controlled entirely by GDOT and require different engineering countermeasures than other roadways. The HIN maps were developed using weighted crashes during the 5-year study period.

Development of the High-Injury Network

The HIN development process involves several steps. The process starts by counting and weighting crashes along every roadway throughout the county (excluding interstate highways). A Sliding Window Analysis then calculates the weighted crash history density (per mile) for sections that meet an established threshold (Table 1) for each transportation mode individually. The final HIN is determined by segments above the highest threshold for crash densities.

High-Injury Network Process

The High-Injury Network is developed using the following steps:

1. Conduct Sliding Window Analyses for all crashes and for each mode and map the results.
2. For all crashes and each mode, determine the threshold score required for a roadway to be included in that mode's HIN.
 - Note: This step eliminates streets that have a lower crash density from the HIN, thereby prioritizing 0.5-mile segments that have higher crash frequencies.
3. Produce a map that shows the segments above the highest threshold for all crashes and each mode.

Sliding Window Analysis Methodology

A Sliding Window Analysis helps safety professionals to better understand crashes throughout a transportation network and identify segments with the highest crash density and crash severity. The analysis works by determining the number and severity of crashes along a roadway segment (the window) and sliding that window along the network at set intervals. In this approach, the window moves along a corridor and counts the number of crashes by density and severity for each mode within each successive segment. An example of a Sliding Windows Analysis is shown in Figure 1.

To perform this HIN analysis, roadways of the same name and functional class were split into half-mile segments. The analysis segment windows extended 0.5 miles in length and slide along the network at 0.1-mile increments. A lateral buffer of 50 feet on either side of the segment was used to capture crashes whose geographic data may not be precisely aligned within the roadway bounds.

The Sliding Window Analysis scores weight the most severe crashes more heavily than lower severity crashes. The scores are calculated by multiplying the number of Fatal (K) and Serious/Suspected Serious Injury (A) crashes by 3, multiplying the number of Suspected Minor Injury (B) by 2, Possible Injury (C) by 1, and No Injury (O) crashes by 0. This ratio allows for the inclusion of less severe crashes in the analysis while still emphasizing corridors with more severe crashes. Once these weights are established and applied to the crashes, the total number of crashes is aggregated along a corridor while incorporating the crash severity weighting. For the purpose of this analysis, crashes are geospatially assigned to the nearest roadway segment.

Both intersection and segment crashes were included in this evaluation because the focus of this analysis is on overall corridor conditions. Crash events occurring within the bounds of an intersection were counted on both corridors for the purposes of identifying the HIN. The Sliding Window Analysis includes pedestrian, bicycle, motorcycle, and motor vehicle modes.

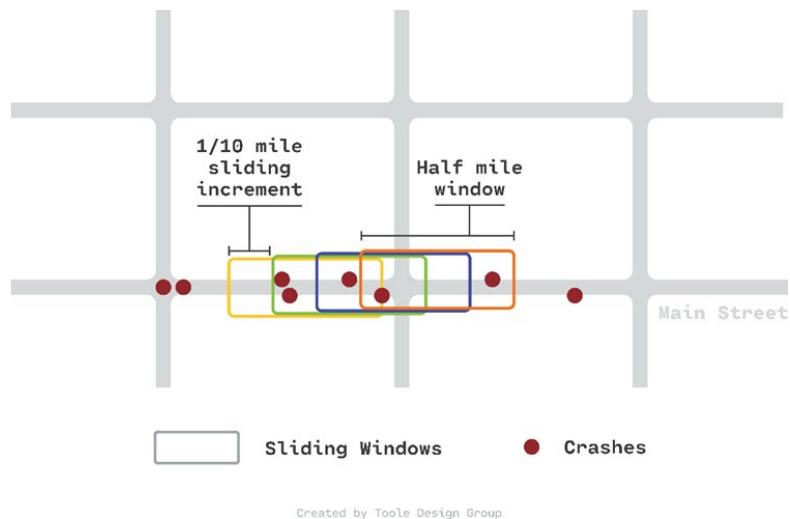


Figure 1 Example of a Sliding Windows Analysis

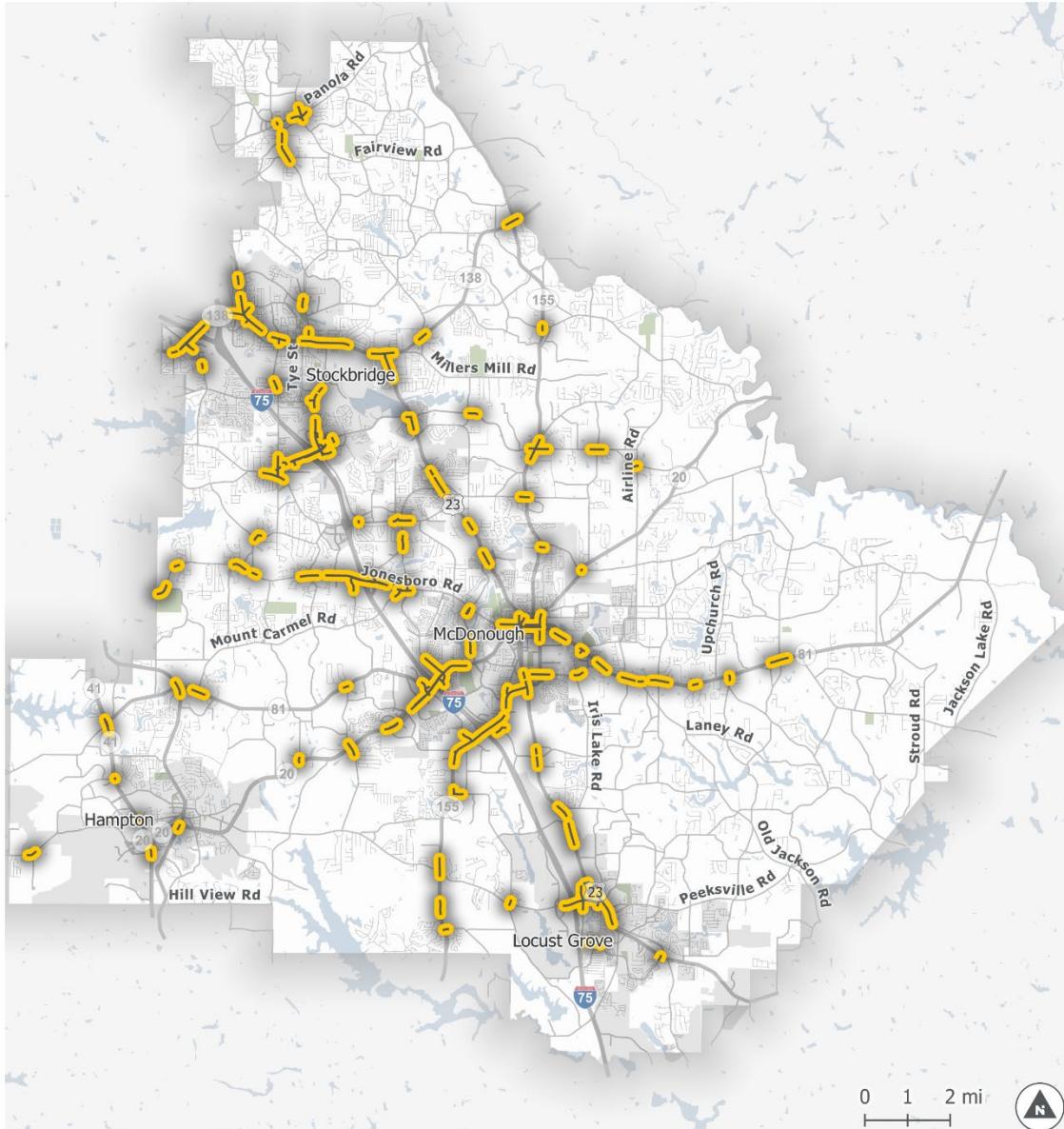
Created by Toole Design Group

High-Injury Network Thresholds

Setting a Sliding Window Analysis score threshold for each mode identifies key corridors where crash risks are highest for that particular mode. These scores differ by transportation mode to account for the typical occurrence of crashes by mode. For example, a score of 2 may be high for the pedestrian network, but relatively low for a motor vehicle network because there are generally more motor vehicle crashes than pedestrian crashes. A segment that meets or exceeds the threshold score for that mode will be assigned as being part of that mode's HIN. Score thresholds are determined based on natural breaks and are unique to the relative crash densities within Henry County. The threshold scores used for the Henry County TSAP are listed in Table 1.

Table 1 Mode and Threshold Score Used to Create the HINs

MODE	SCORE THRESHOLD
ALL MODES	3
PEDESTRIAN	0.1
BICYCLE	0.1
MOTORCYCLE	0.5
MOTOR VEHICLE ONLY	3


Analysis Results

The following subsections show the Henry County High-Injury Network, the total Sliding Window Analysis results, and the analysis results broken out by each transportation mode. There is a single HIN and Sliding Window Analysis for the whole county; detailed maps also show each jurisdiction, including City of McDonough, City of Stockbridge, City of Locust Grove, and City of Hampton.

Figure 2 through Figure 6 show the High-Injury Network within Henry County and each city. Figure 7 through Figure 11 show the Sliding Window Analysis results for all modes within Henry County and each city. Figure 12 through Figure 31 show the Sliding Window Analysis results for each mode independently within Henry County and each city.

High-Injury Network

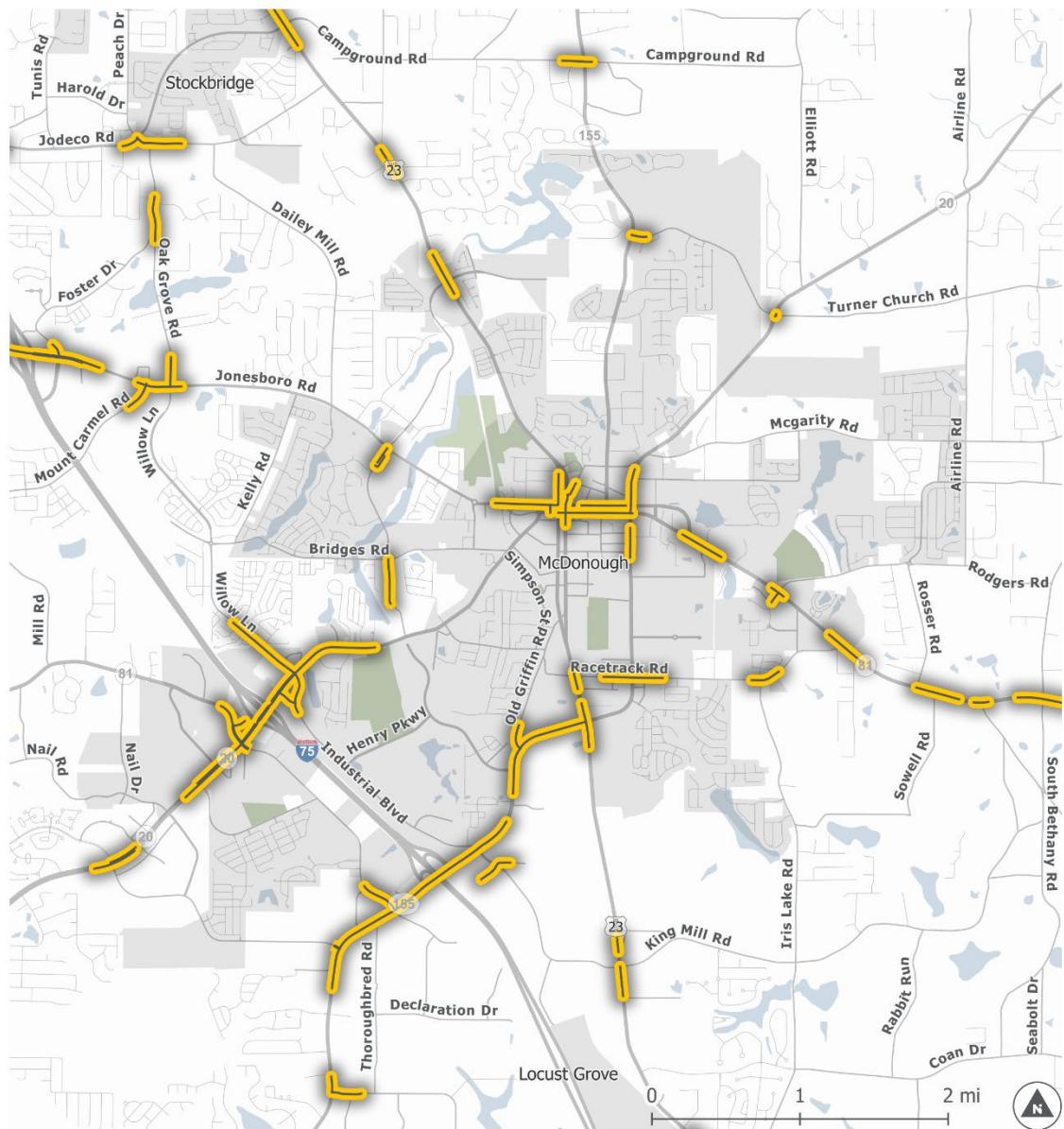
The following figures show the High-Injury Network for all modes combined. High-Injury Network segments are those currently ranked as "high" within the Sliding Window Analysis methodology.

High-Injury Network

All Modes (2019-2023)

— All Modes (HIGH)

Cities


Henry County

TOOLE
DESIGN

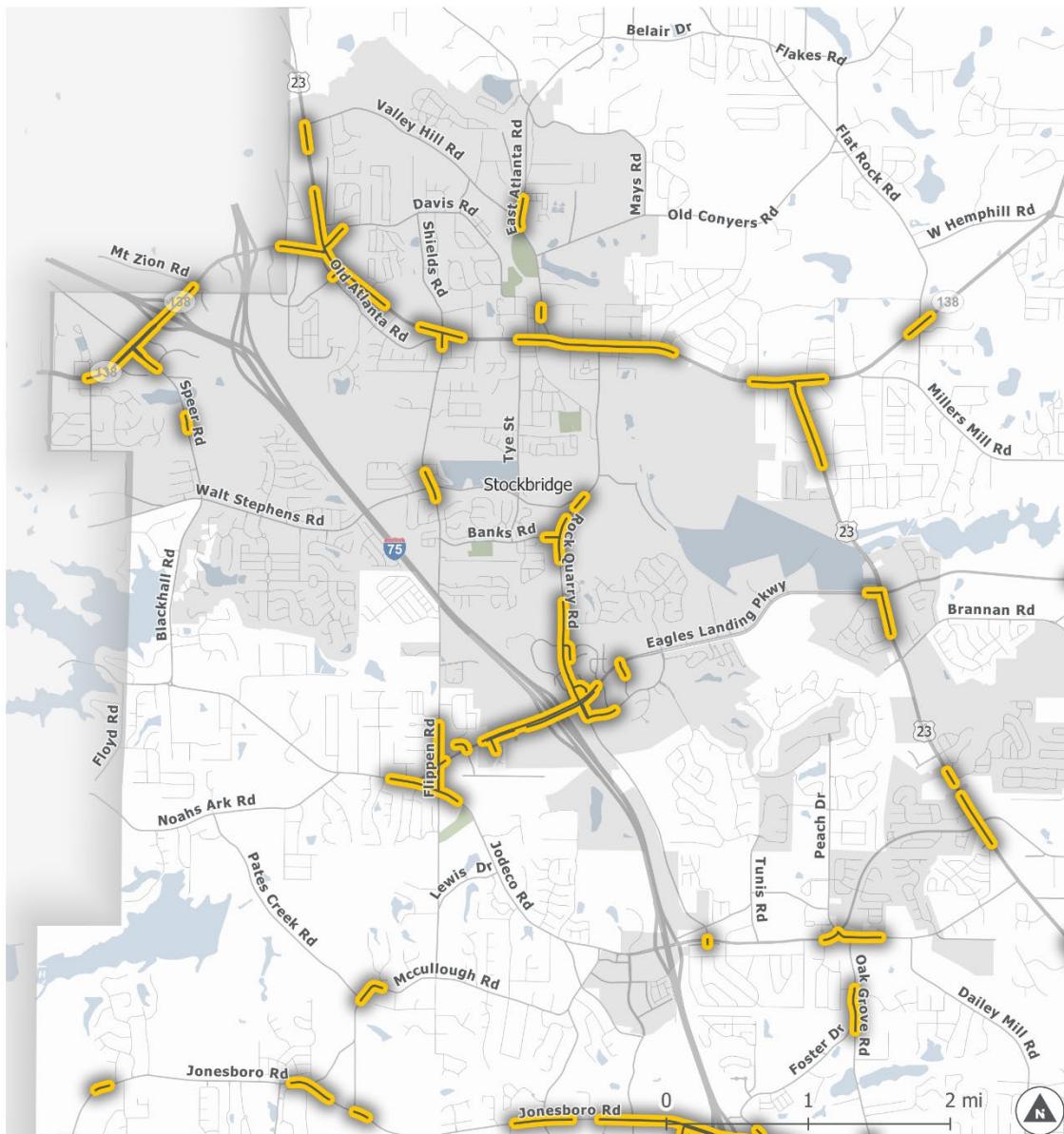
HENRY COUNTY **TRANSPORTATION SAFETY ACTION PLAN**

Figure 2 High-Injury Network (Henry County)

High-Injury Network

All Modes (2019-2023)

— All Modes (HIGH)


■ Cities

□ Henry County

TOOLE
DESIGN

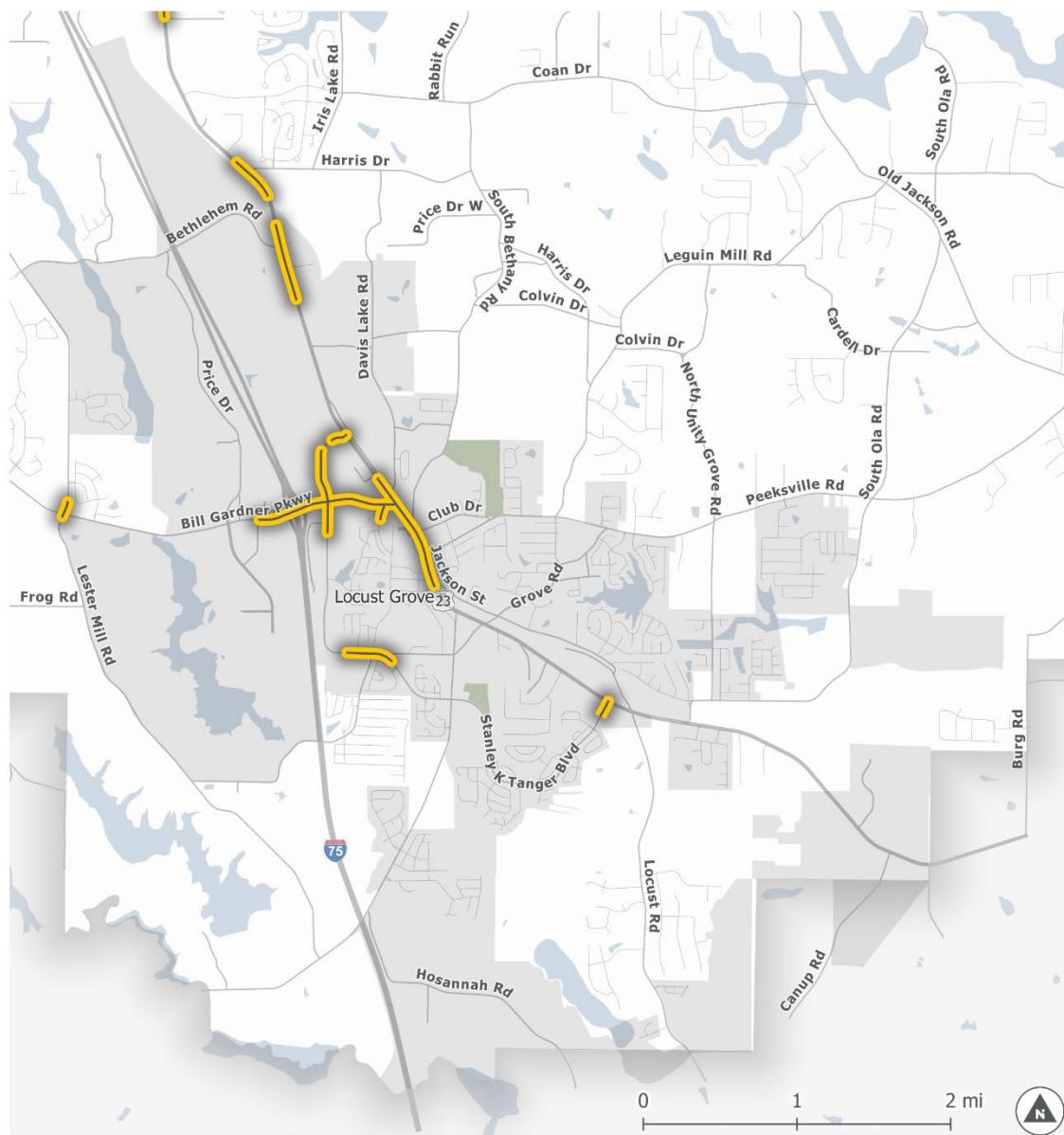
HENRY COUNTY
**TRANSPORTATION
SAFETY ACTION PLAN**
mobility and safety for all

Figure 3 High-Injury Network (McDonough)

High-Injury Network

All Modes (2019-2023)

— All Modes (HIGH)


■ Cities

□ Henry County

TOOLE
DESIGN

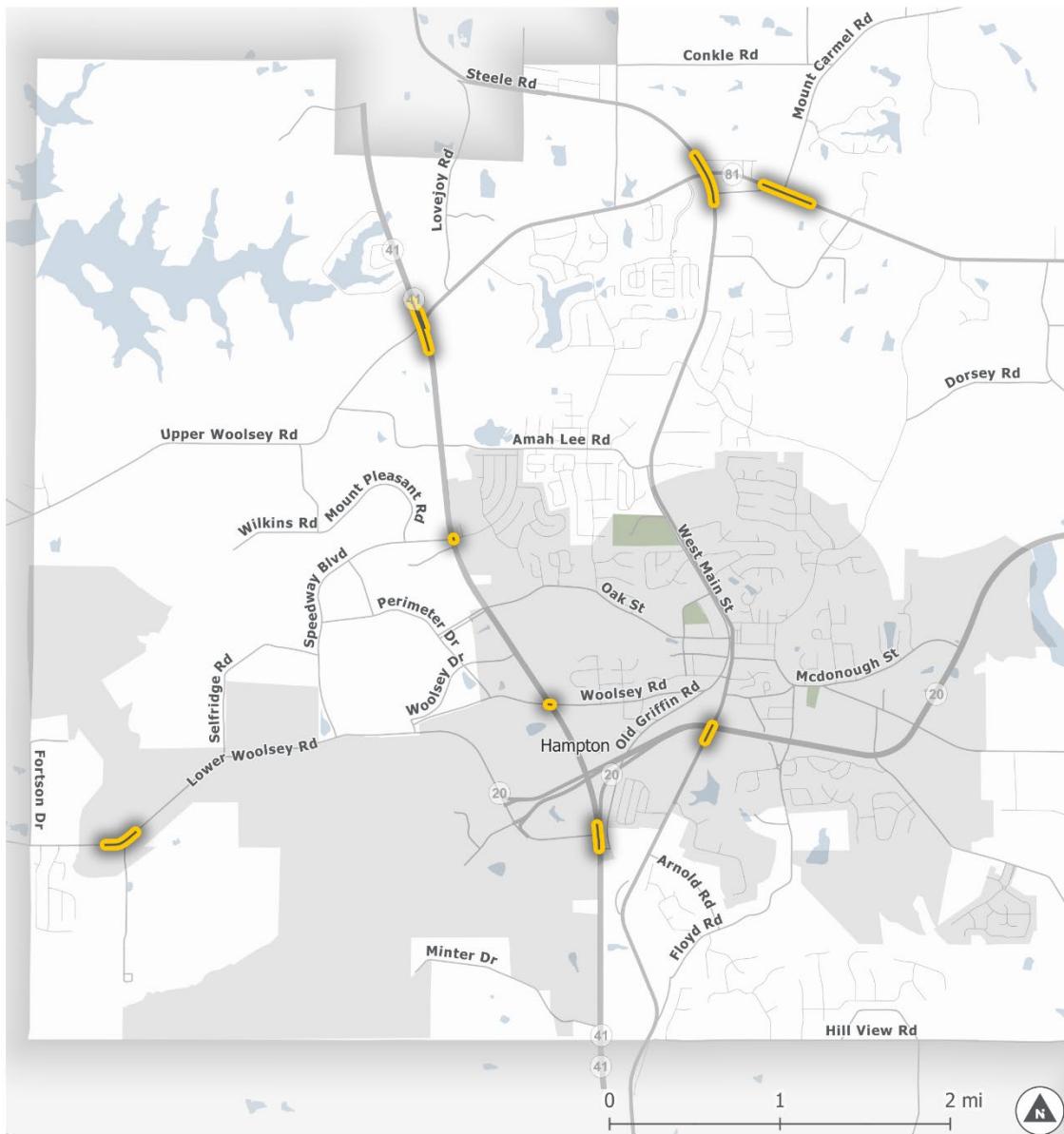
HENRY COUNTY
**TRANSPORTATION
SAFETY ACTION PLAN**
mobility and safety for all

Figure 4 High-Injury Network (Stockbridge)

High-Injury Network

All Modes (2019-2023)

— All Modes (HIGH)


■ Cities

□ Henry County

TOOLE
DESIGN

HENRY COUNTY
TRANSPORTATION
SAFETY ACTION PLAN
mobility and safety for all

Figure 5 High-Injury Network (Locust Grove)

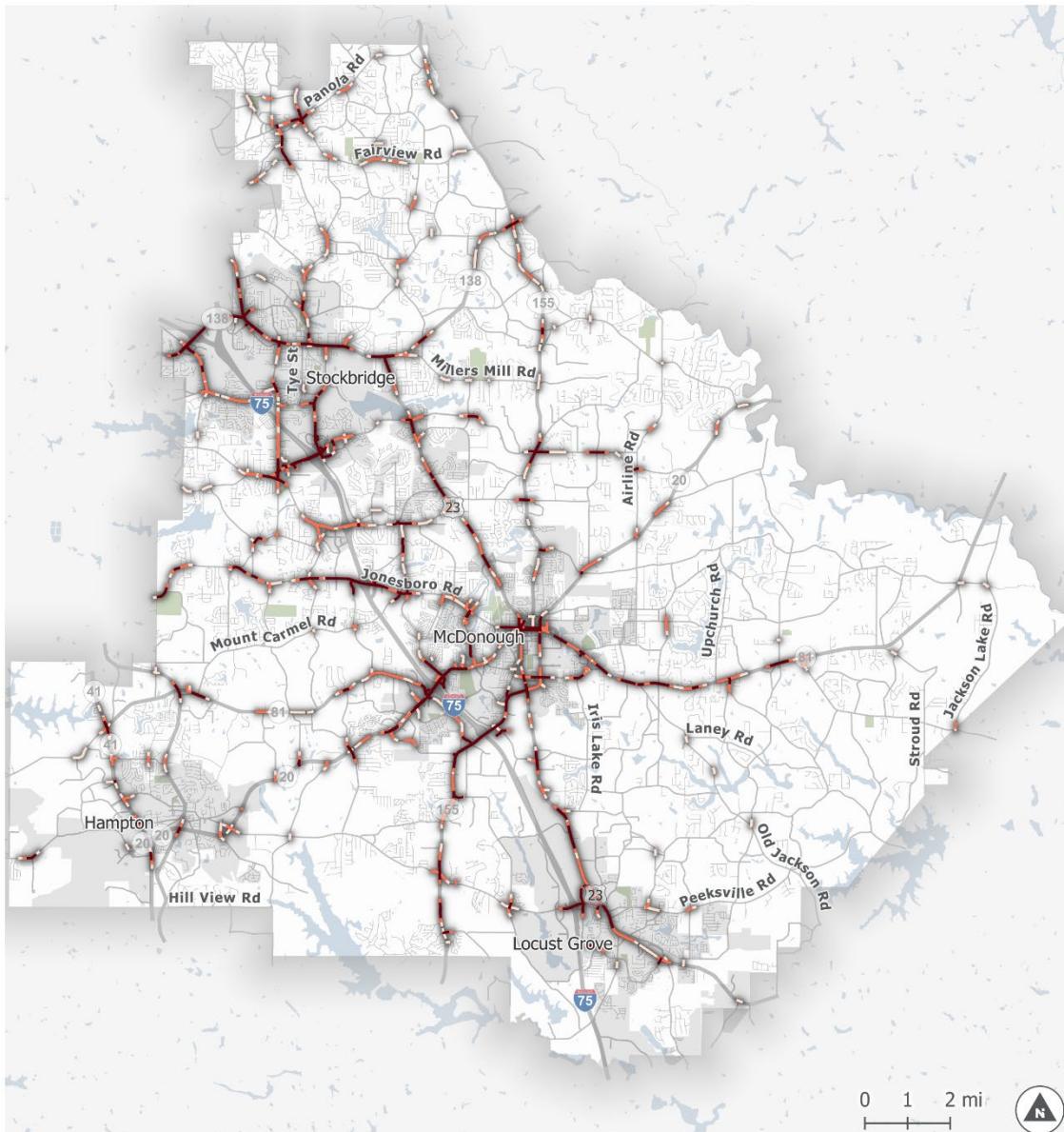
High-Injury Network

All Modes (2019-2023)

— All Modes (HIGH)

■ Cities

□ Henry County


TOOLE
DESIGN

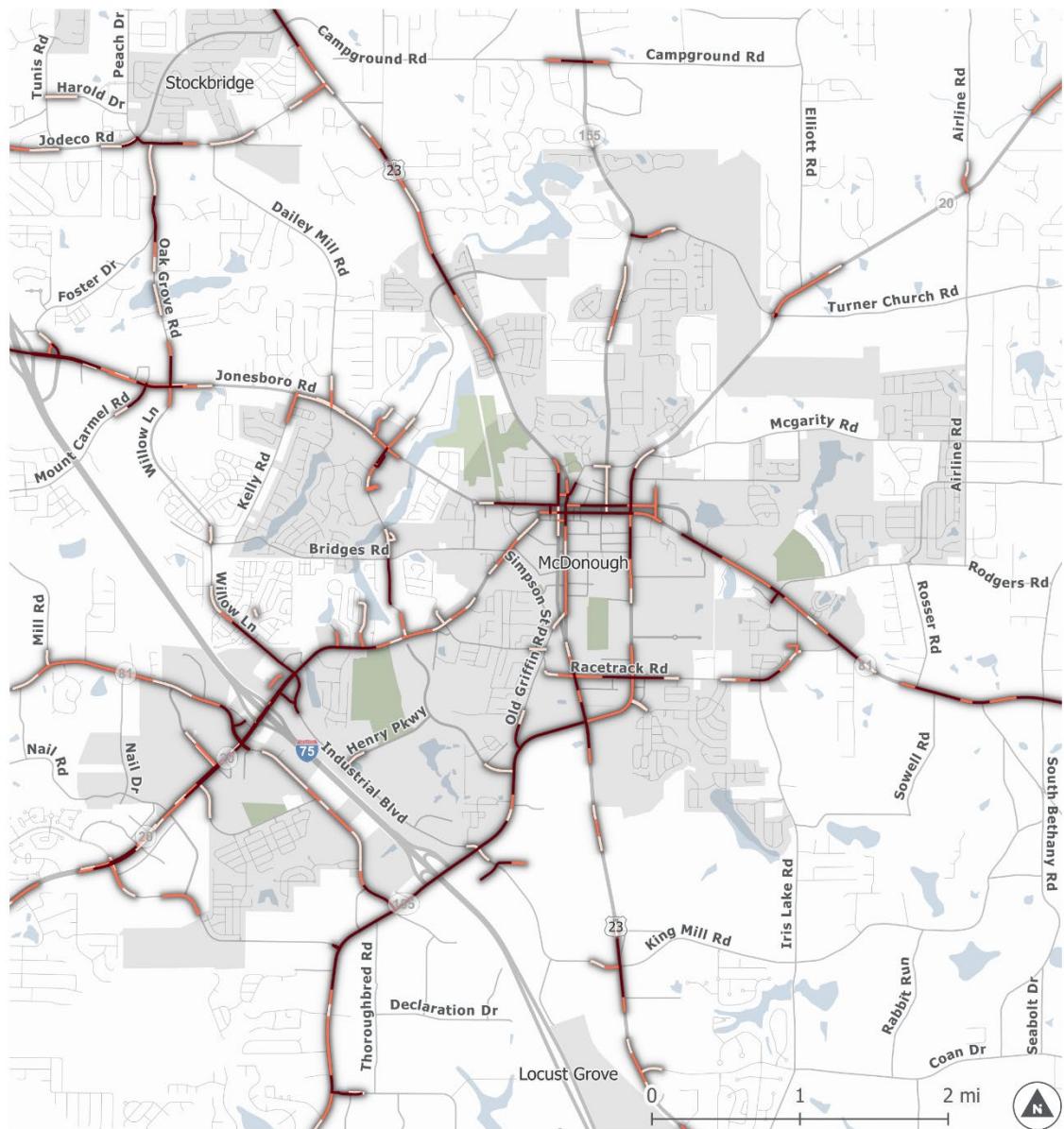
HENRY COUNTY
**TRANSPORTATION
SAFETY ACTION PLAN**
mobility and safety for all

Figure 6 High-Injury Network (Hampton)

All Modes Sliding Window Analysis

The following figures show the Sliding Window Analysis results for all transportation modes and jurisdictions within Henry County.

Sliding Window Analysis


All Modes (2019-2023)

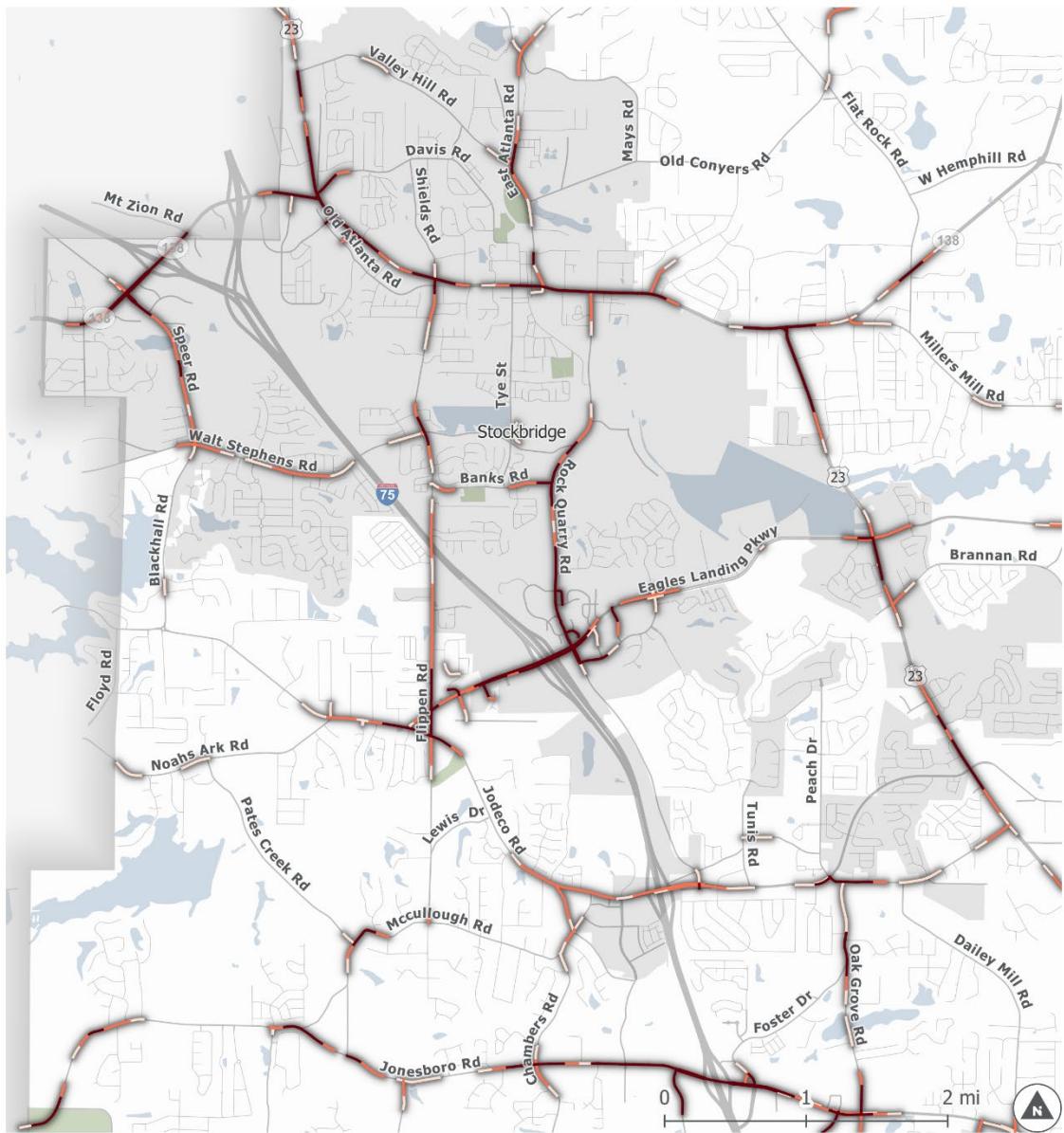
- Low
- Medium
- High
- Cities
- Henry County

TOOLE
DESIGN

HENRY COUNTY
**TRANSPORTATION
SAFETY ACTION PLAN**
mobility and safety for all

Figure 7 Sliding Window Analysis – All Modes (Henry County)

Sliding Window Analysis


All Modes (2019-2023)

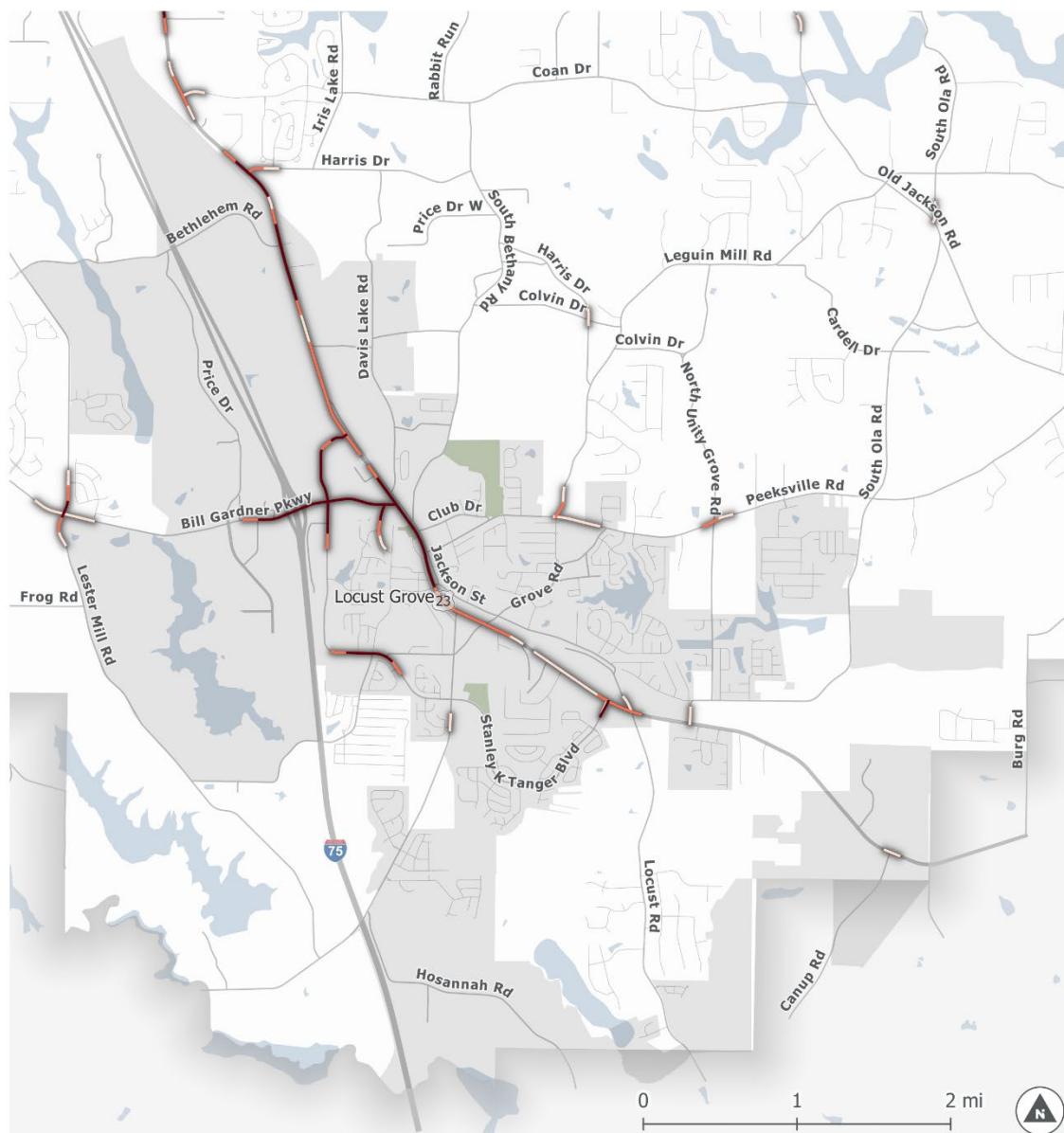
- Low
- Medium
- High
- Cities
- Henry County

TOOLE
DESIGN

HENRY COUNTY
**TRANSPORTATION
SAFETY ACTION PLAN**
mobility and safety for all

Figure 8 Sliding Window Analysis – All Modes (McDonough)

Sliding Window Analysis


All Modes (2019-2023)

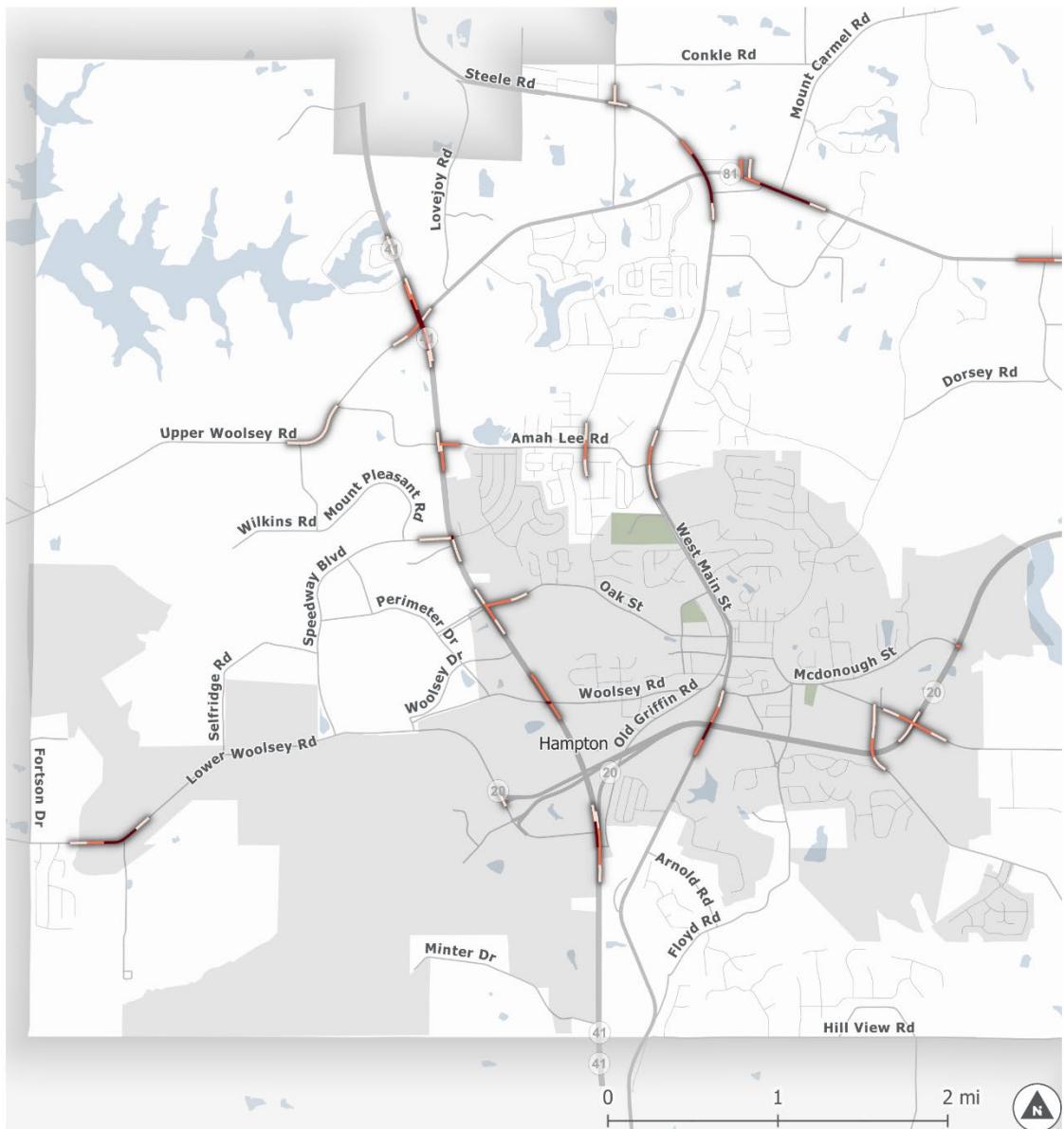
- Low
- Medium
- High
- Cities
- Henry County

TOOLE
DESIGN

HENRY COUNTY
**TRANSPORTATION
SAFETY ACTION PLAN**
mobility and safety for all

Figure 9 Sliding Window Analysis – All Modes (Stockbridge)

Sliding Window Analysis


All Modes (2019-2023)

- Low
- Medium
- High
- Cities
- Henry County

TOOLE
DESIGN

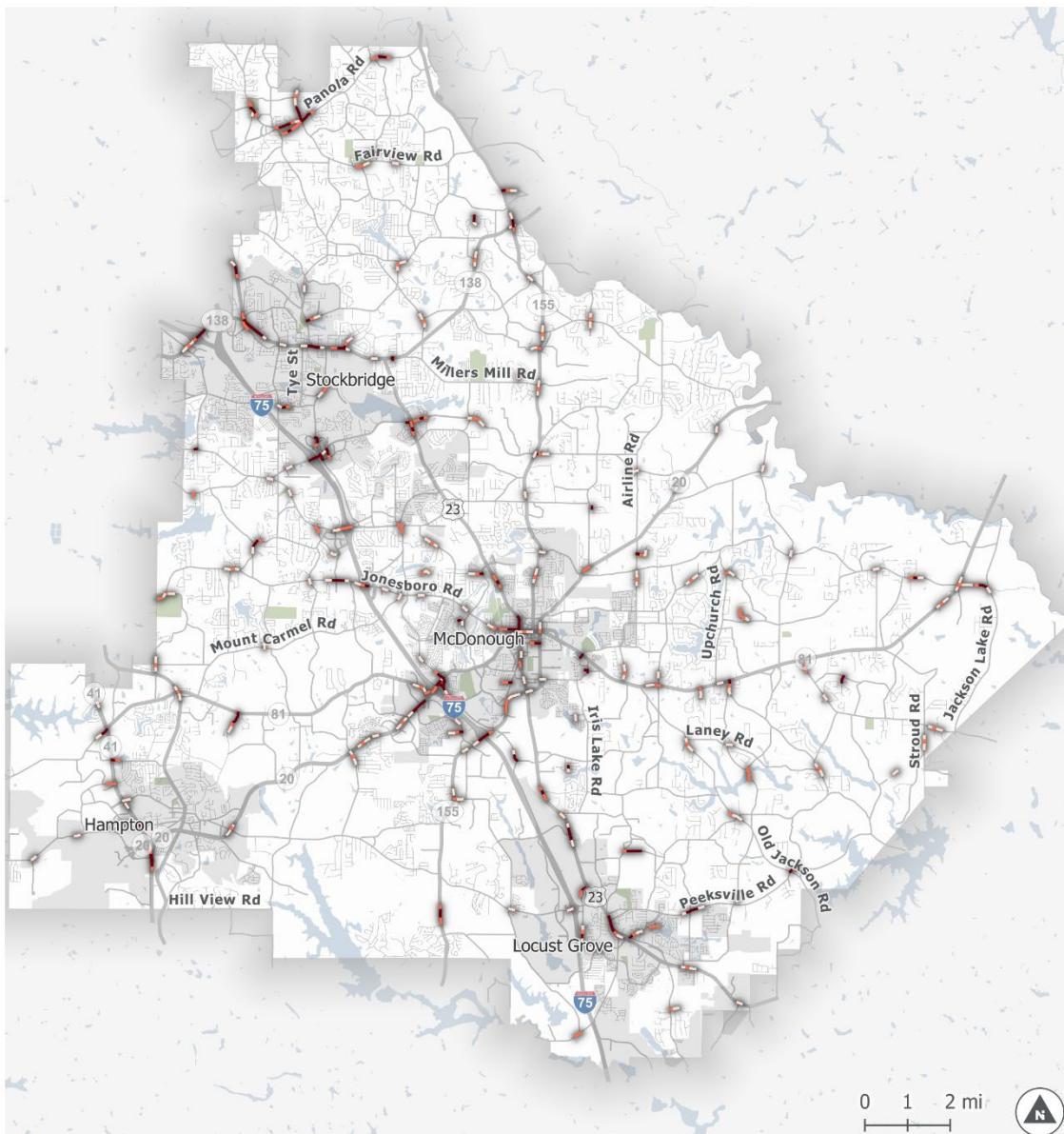
HENRY COUNTY
TRANSPORTATION
SAFETY ACTION PLAN
mobility and safety for all

Figure 10 Sliding Window Analysis – All Modes (Locus Grove)

Sliding Window Analysis

All Modes (2019-2023)

- Low
- Medium
- High
- Cities
- Henry County


TOOLE
DESIGN

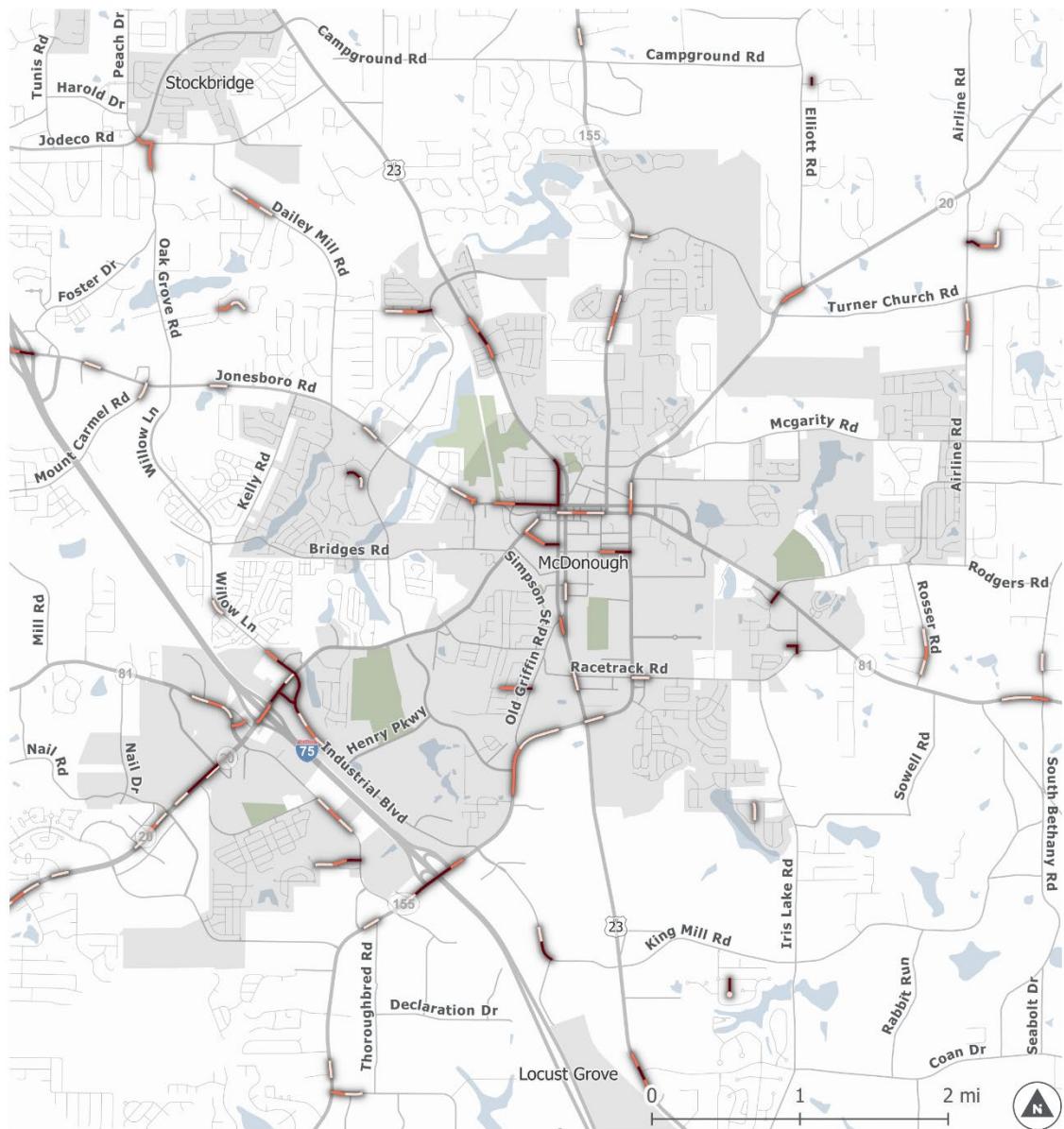
HENRY COUNTY
**TRANSPORTATION
SAFETY ACTION PLAN**
mobility and safety for all

Figure 11 Sliding Window Analysis – All Modes (Hampton)

Modal Sliding Window Analyses

The following figures show the Sliding Window Analysis results for each mode and jurisdiction independently.

Sliding Window Analysis


Motorcycle (2019-2023)

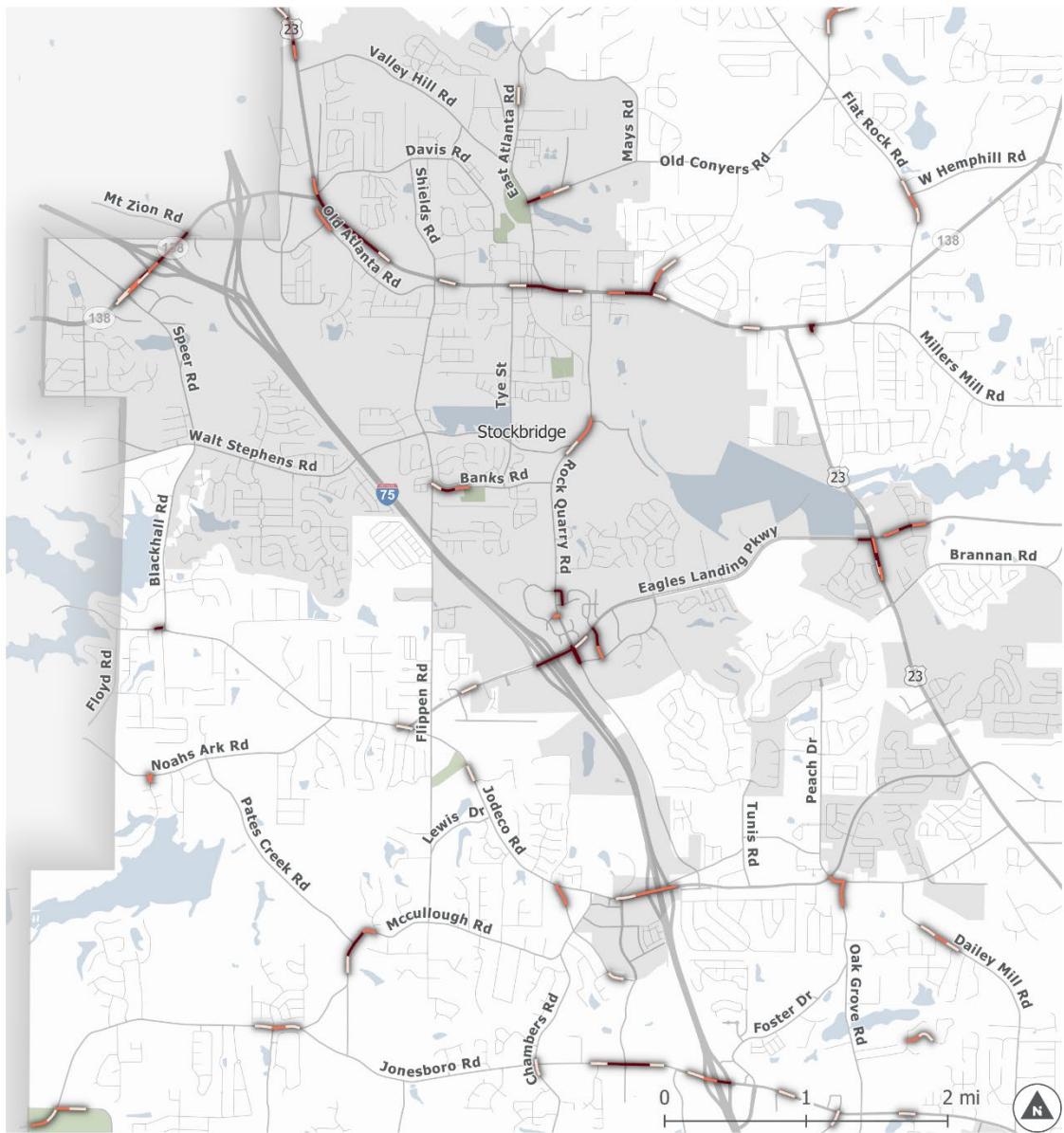
- Low
- Medium
- High
- Cities
- Henry County

TOOLE
DESIGN

HENRY COUNTY
**TRANSPORTATION
SAFETY ACTION PLAN**
mobility and safety for all

Figure 12 Sliding Window Analysis - Motorcycle (Henry County)

Sliding Window Analysis


Motorcycle (2019-2023)

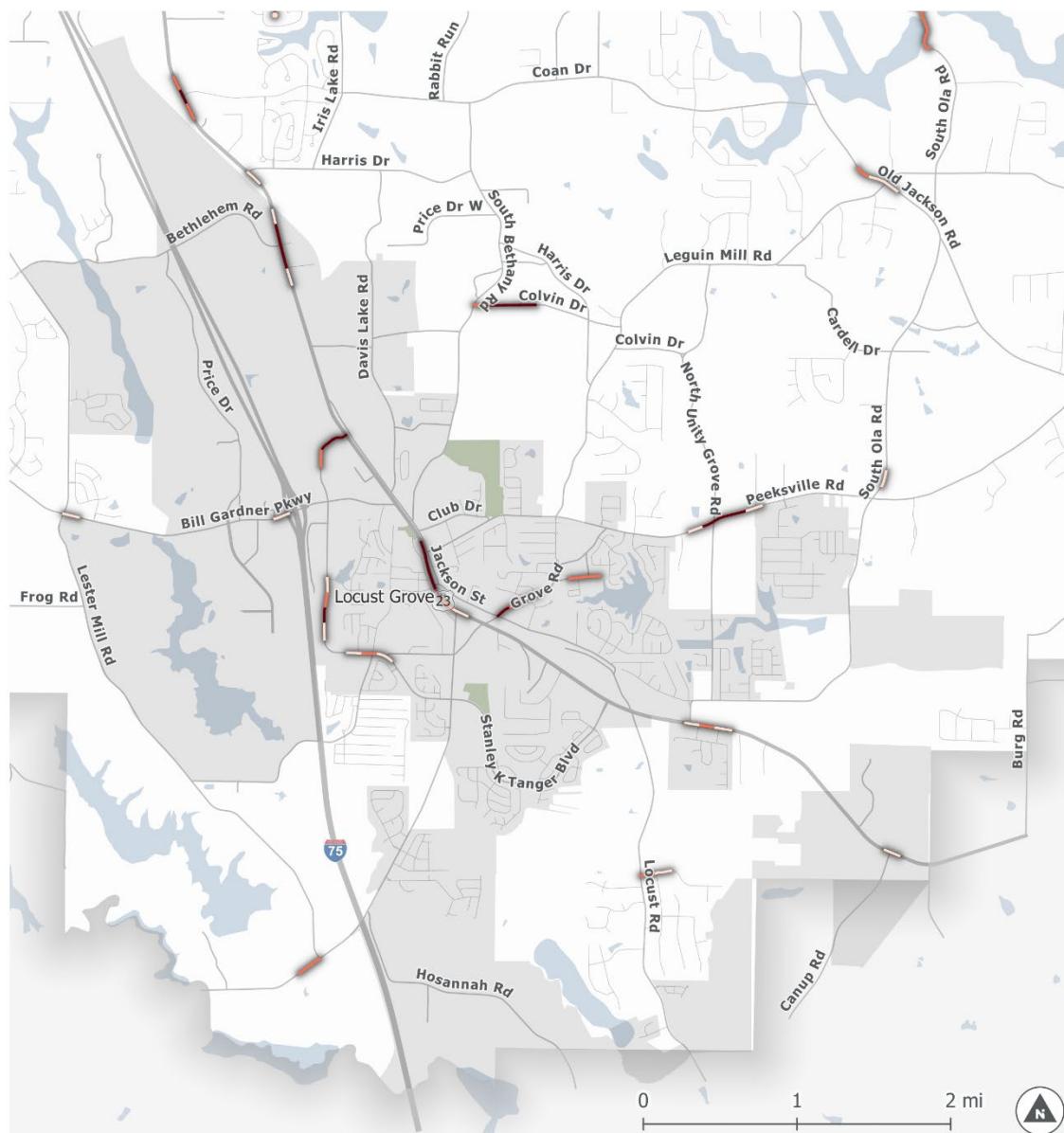
- Low
- Medium
- High
- Cities
- Henry County

TOOLE
DESIGN

HENRY COUNTY
**TRANSPORTATION
SAFETY ACTION PLAN**
mobility and safety for all

Figure 13 Sliding Window Analysis - Motorcycle (McDonough)

Sliding Window Analysis


Motorcycle (2019-2023)

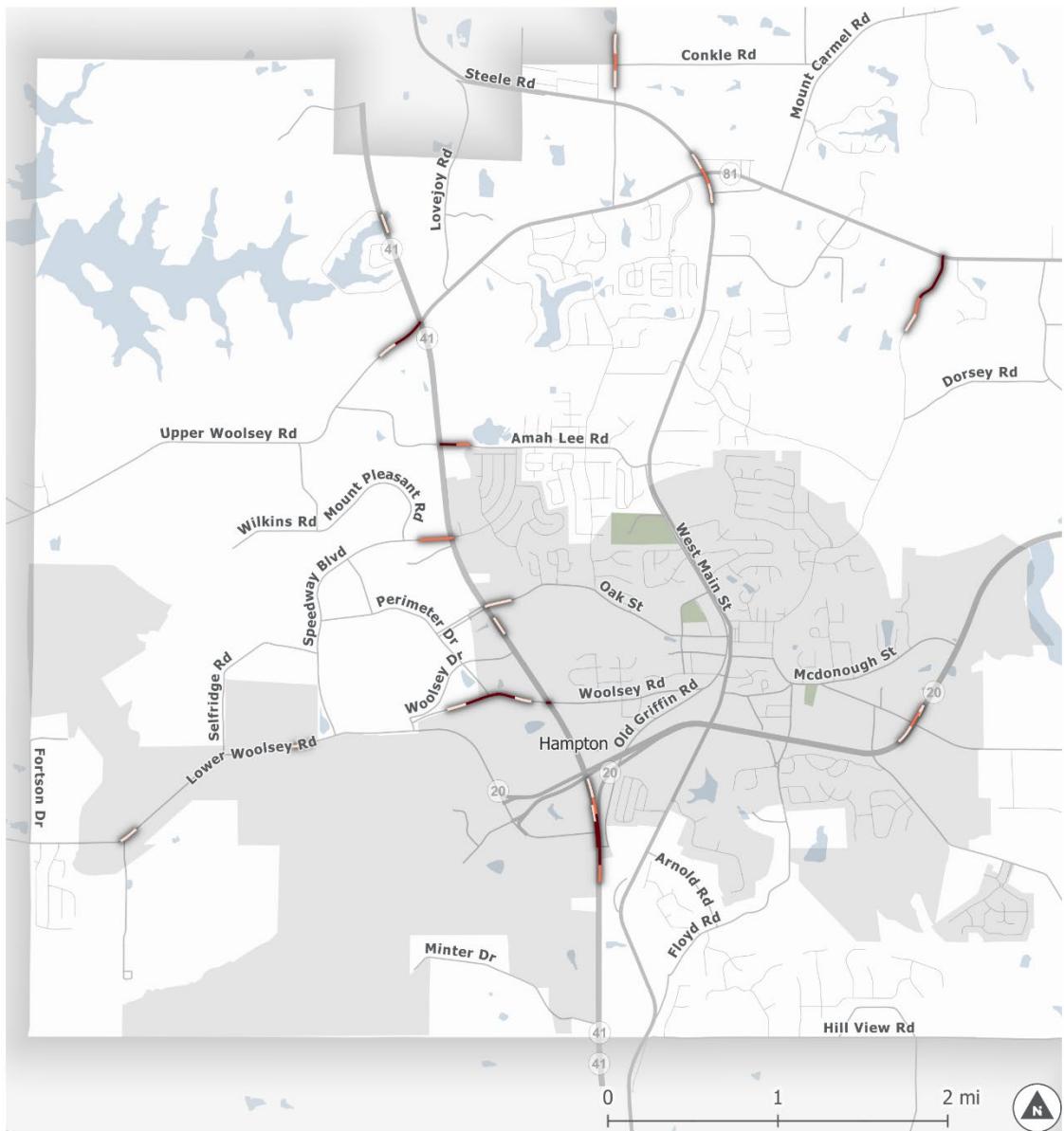
- Low
- Medium
- High
- Cities
- Henry County

TOOLE
DESIGN

HENRY COUNTY
**TRANSPORTATION
SAFETY ACTION PLAN**
mobility and safety for all

Figure 14 Sliding Window Analysis - Motorcycle (Stockbridge)

Sliding Window Analysis


Motorcycle (2019-2023)

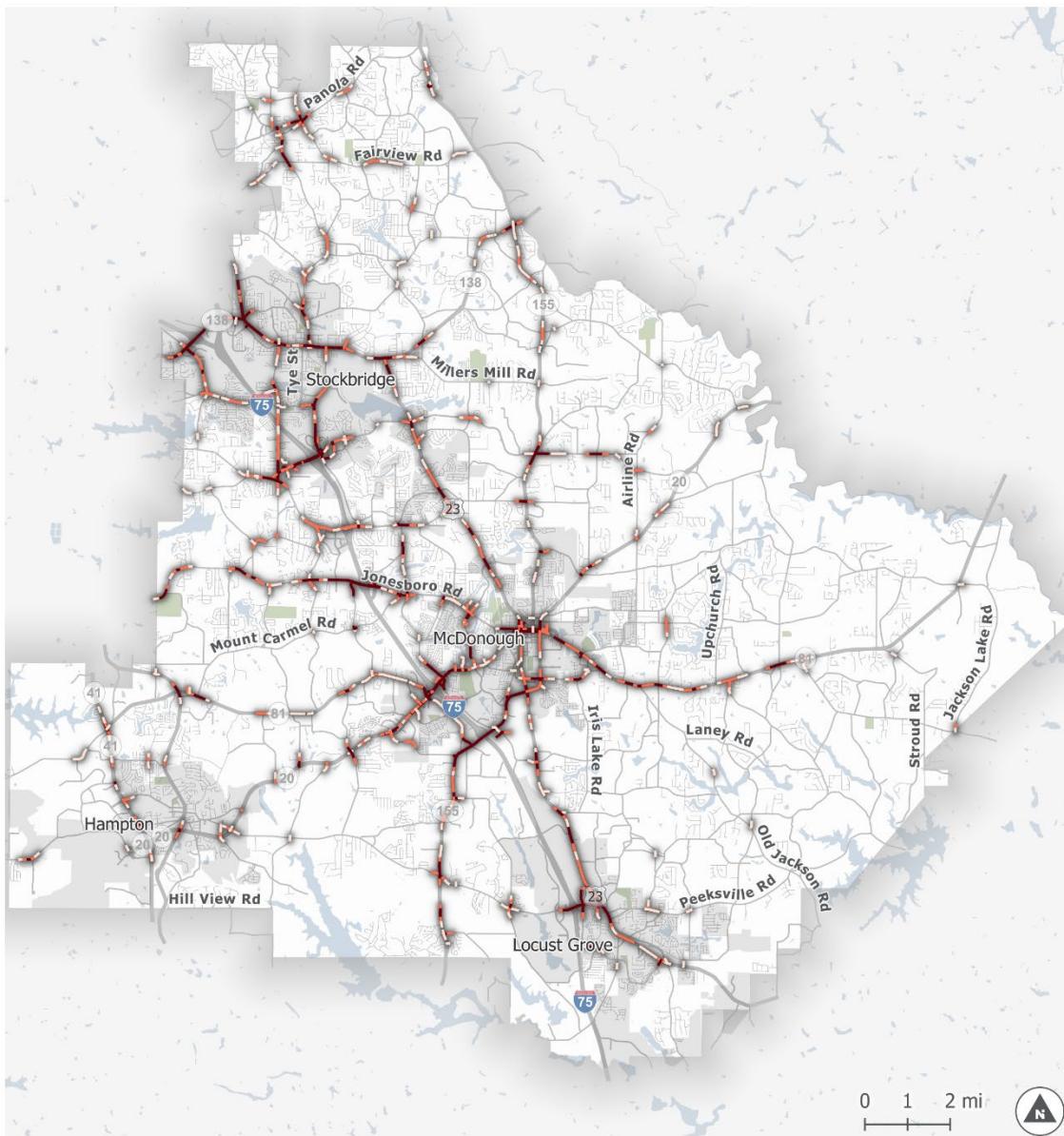
- Low
- Medium
- High
- Cities
- Henry County

TOOLE
DESIGN

HENRY COUNTY
TRANSPORTATION
SAFETY ACTION PLAN
mobility and safety for all

Figure 15 Sliding Window Analysis - Motorcycle (Locust Grove)

Sliding Window Analysis


Motorcycle (2019-2023)

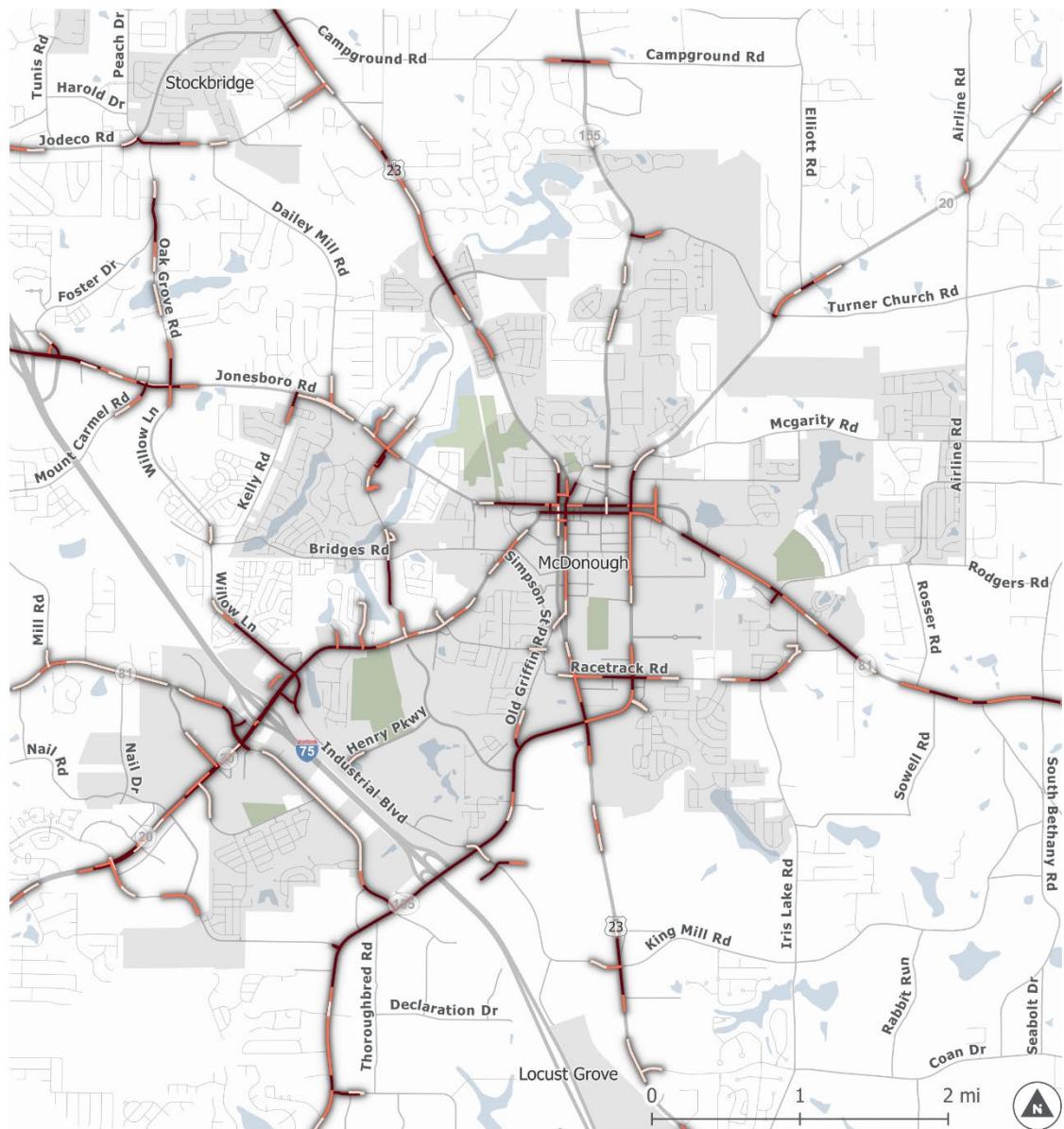
- Low
- Medium
- High
- Cities
- Henry County

TOOLE
DESIGN

HENRY COUNTY
**TRANSPORTATION
SAFETY ACTION PLAN**
mobility and safety for all

Figure 16 Sliding Window Analysis - Motorcycle (Hampton)

Sliding Window Analysis


Motor Vehicle Only (2019-2023)

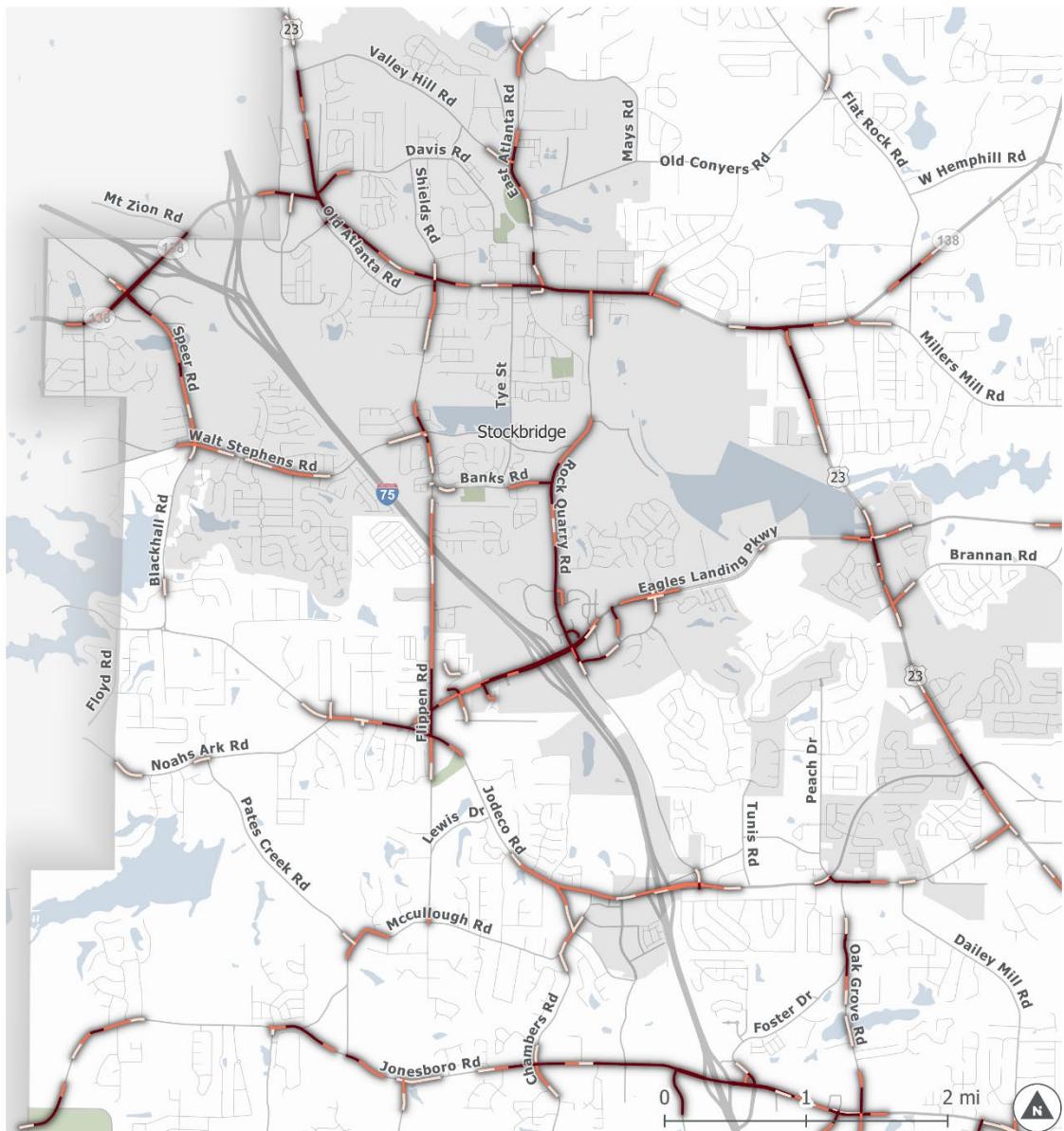
- Low
- Medium
- High
- Cities
- Henry County

TOOLE
DESIGN

HENRY COUNTY
**TRANSPORTATION
SAFETY ACTION PLAN**
mobility and safety for all

Figure 17 Sliding Window Analysis - Motor Vehicle Only (Henry County)

Sliding Window Analysis


Motor Vehicle Only (2019-2023)

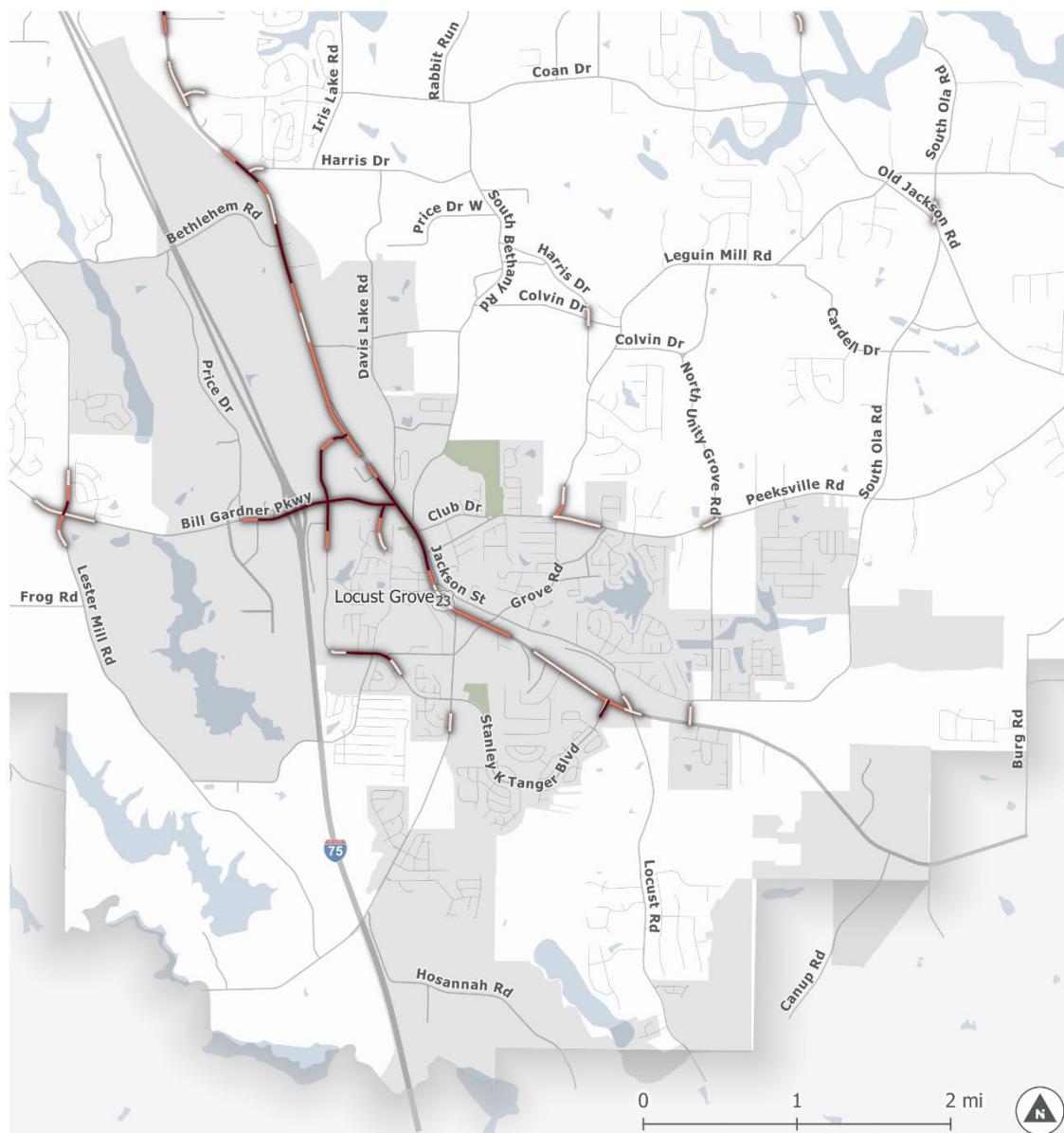
- Low
- Medium
- High
- Cities
- Henry County

TOOLE
DESIGN

HENRY COUNTY
**TRANSPORTATION
SAFETY ACTION PLAN**
mobility and safety for all

Figure 18 Sliding Window Analysis - Motor Vehicle Only (McDonough)

Sliding Window Analysis


Motor Vehicle Only (2019-2023)

- Low
- Medium
- High
- Cities
- Henry County

TOOLE
DESIGN

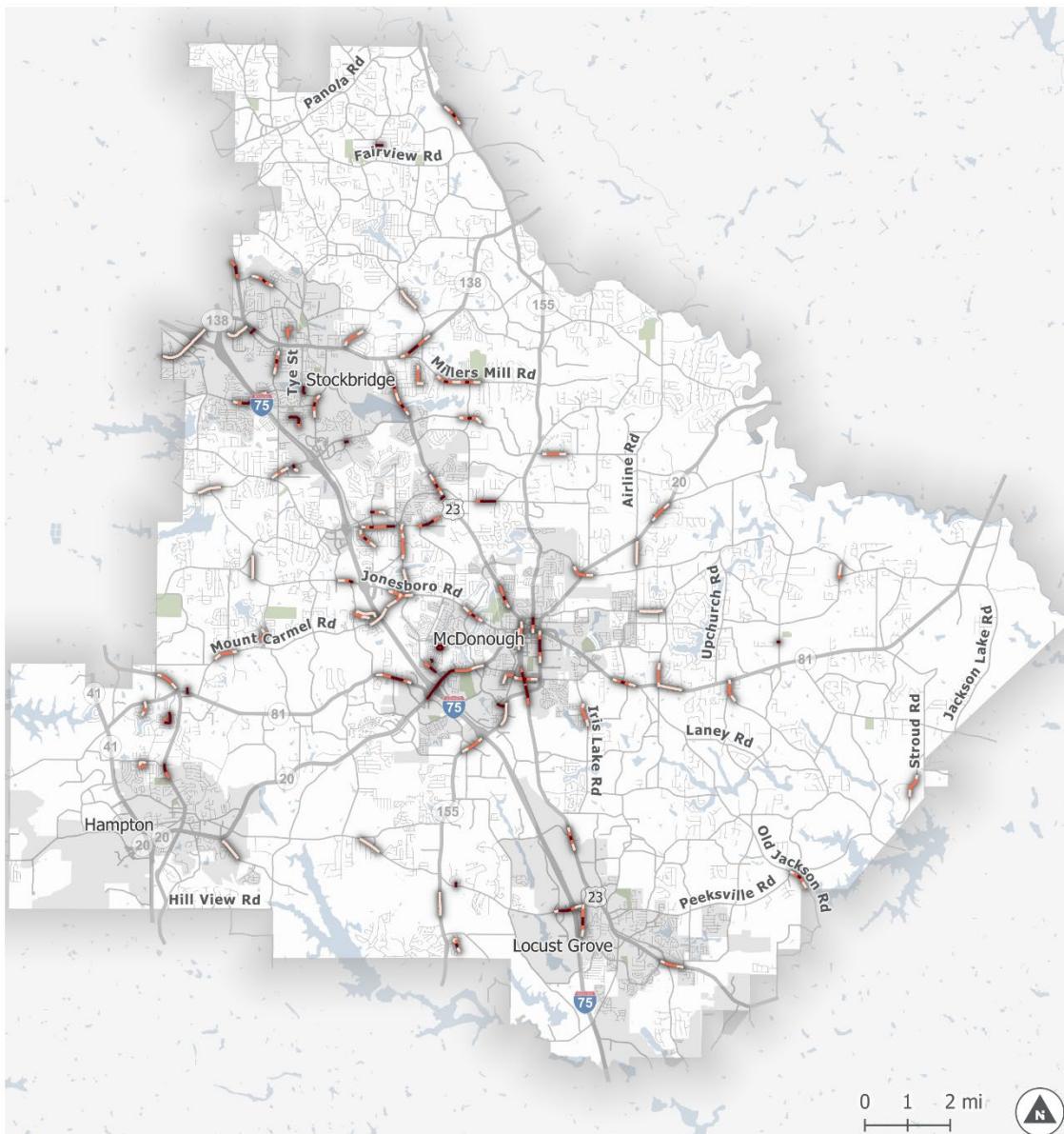
HENRY COUNTY
**TRANSPORTATION
SAFETY ACTION PLAN**
mobility and safety for all

Figure 19 Sliding Window Analysis - Motor Vehicle Only (Stockbridge)

Sliding Window Analysis

Motor Vehicle Only (2019-2023)

- Low
- Medium
- High
- Cities
- Henry County

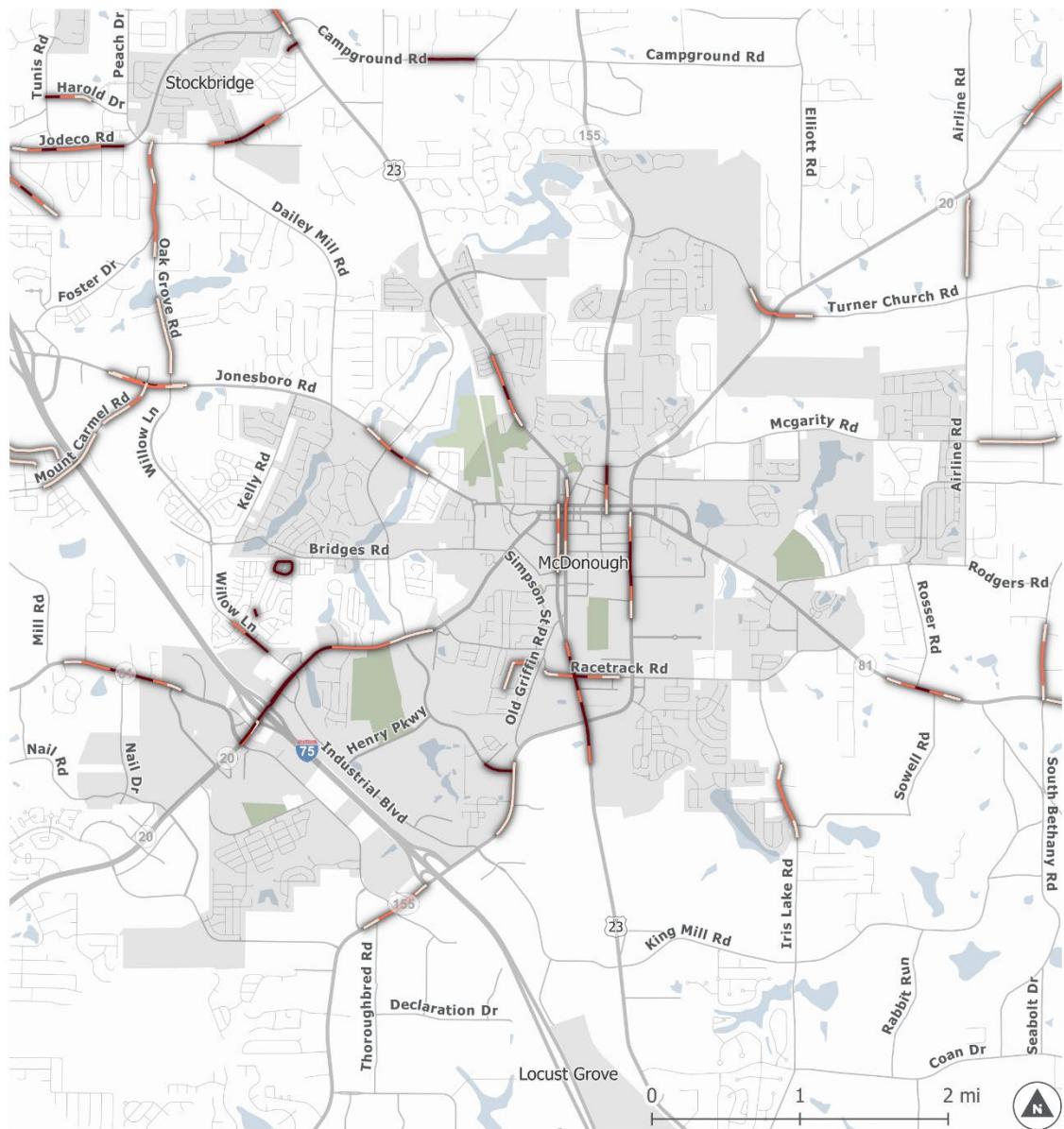

TOOLE
DESIGN

HENRY COUNTY
**TRANSPORTATION
SAFETY ACTION PLAN**
mobility and safety for all

Figure 20 Sliding Window Analysis - Motor Vehicle Only (Locust Grove)

Figure 21 Sliding Window Analysis - Motor Vehicle Only (Hampton)

Sliding Window Analysis


Pedestrian (2019-2023)

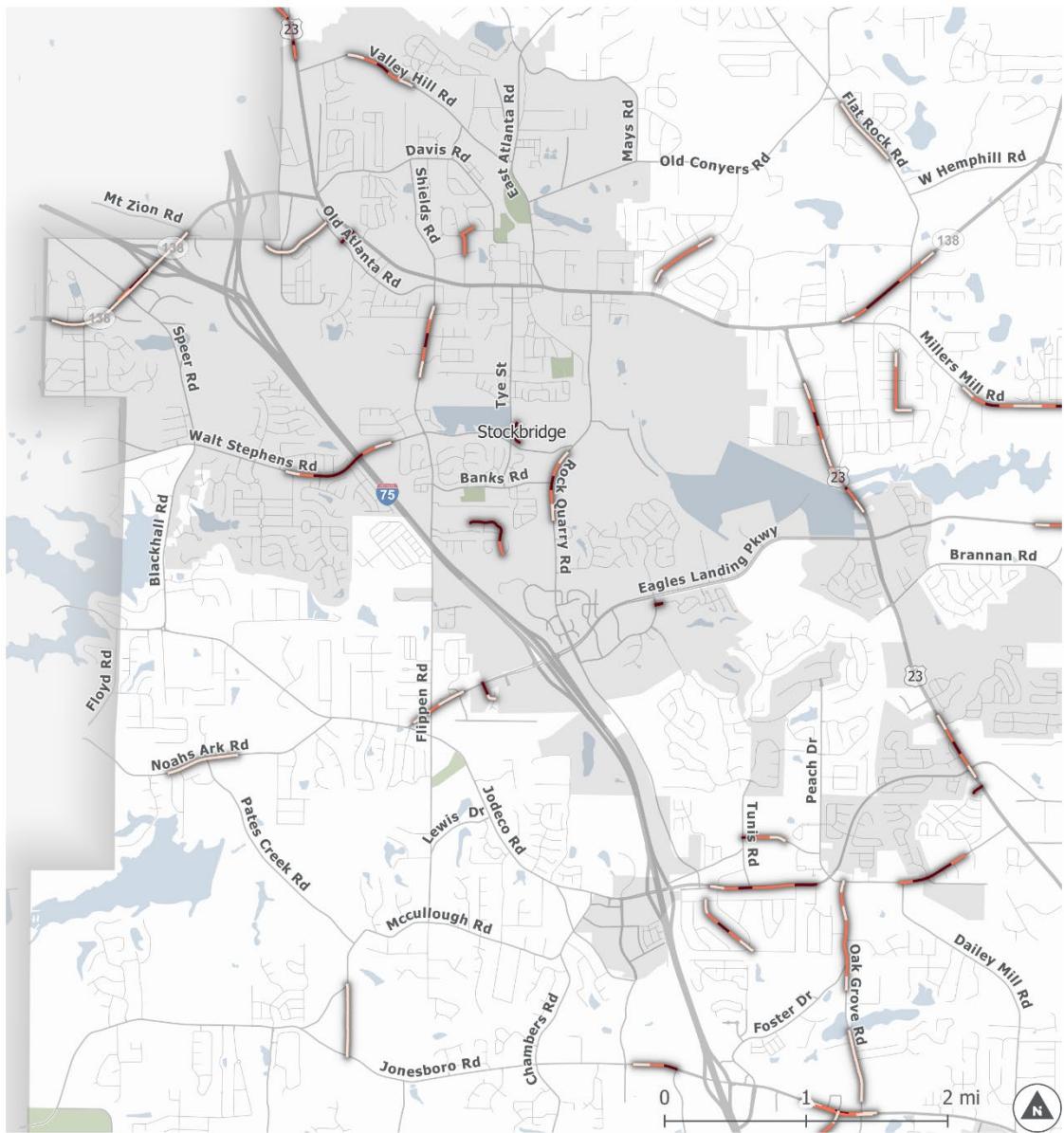
- Low
- Medium
- High
- Cities
- Henry County

TOOLE
DESIGN

HENRY COUNTY
**TRANSPORTATION
SAFETY ACTION PLAN**
mobility and safety for all

Figure 22 Sliding Window Analysis - Pedestrian (Henry County)

Sliding Window Analysis


Pedestrian (2019-2023)

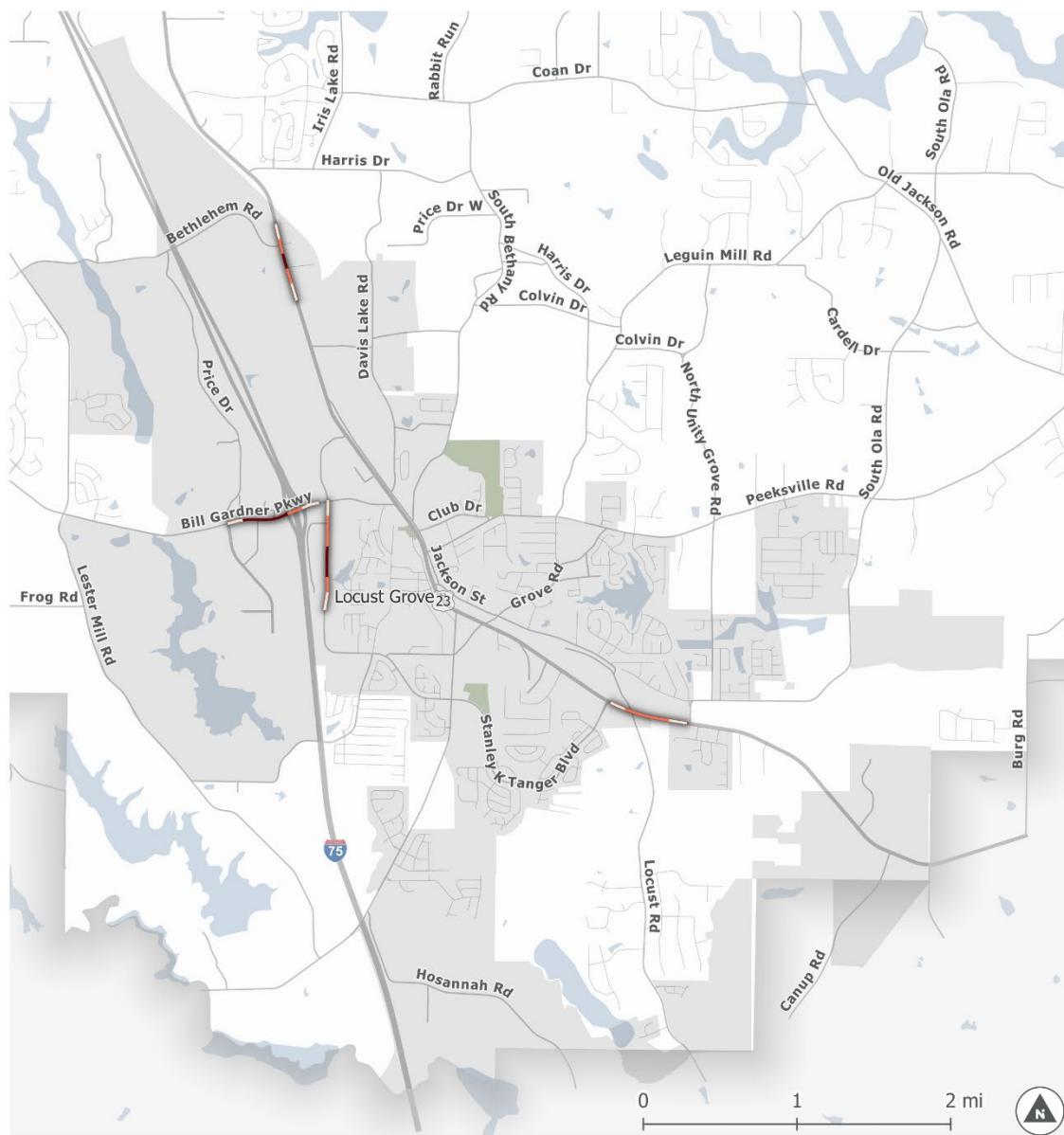
- Low
- Medium
- High
- Cities
- Henry County

TOOLE
DESIGN

HENRY COUNTY
**TRANSPORTATION
SAFETY ACTION PLAN**
mobility and safety for all

Figure 23 Sliding Window Analysis - Pedestrian (McDonough)

Sliding Window Analysis


Pedestrian (2019-2023)

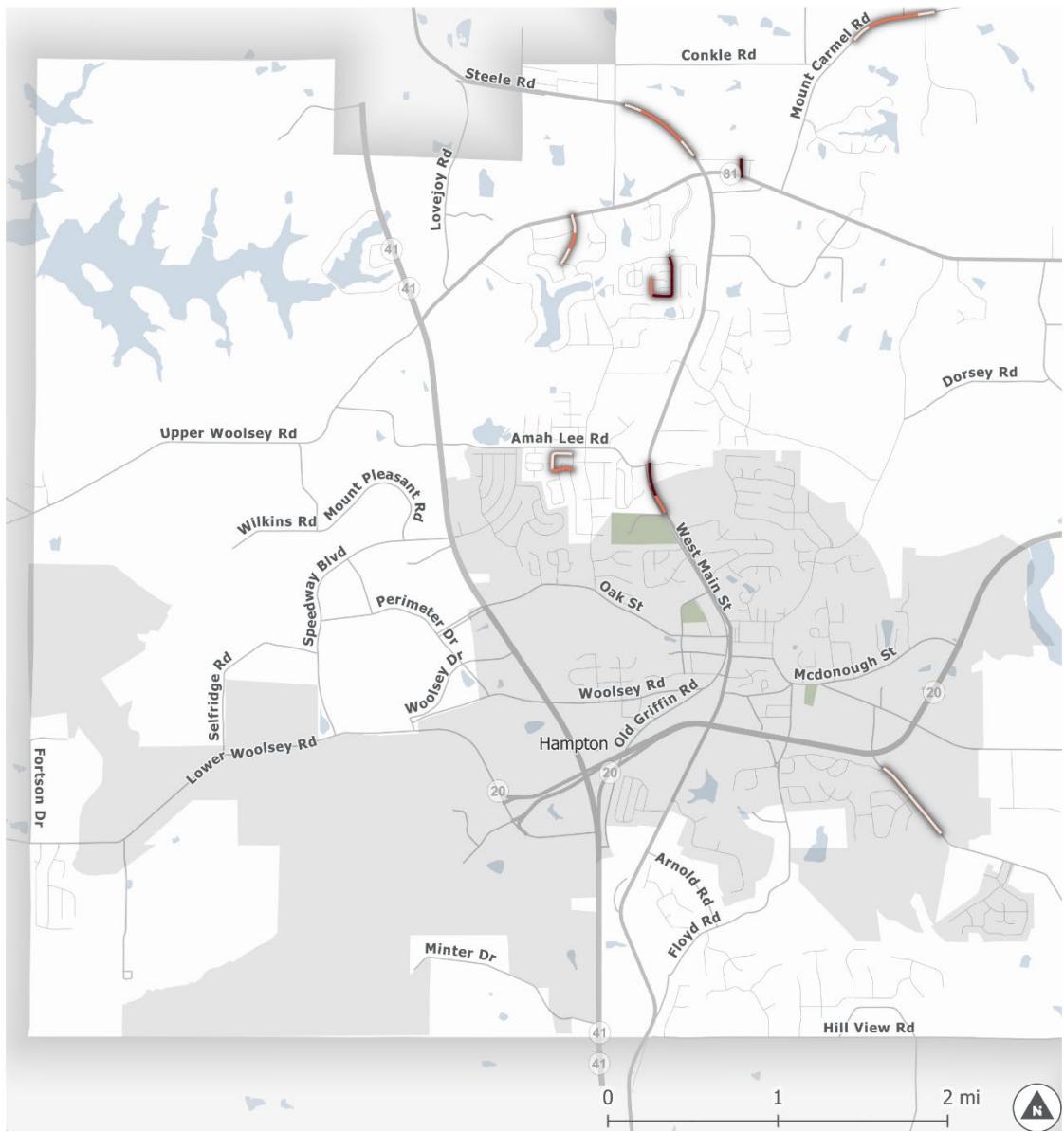
- Low
- Medium
- High
- Cities
- Henry County

TOOLE
DESIGN

HENRY COUNTY
**TRANSPORTATION
SAFETY ACTION PLAN**
mobility and safety for all

Figure 24 Sliding Window Analysis - Pedestrian (Stockbridge)

Sliding Window Analysis


Pedestrian (2019-2023)

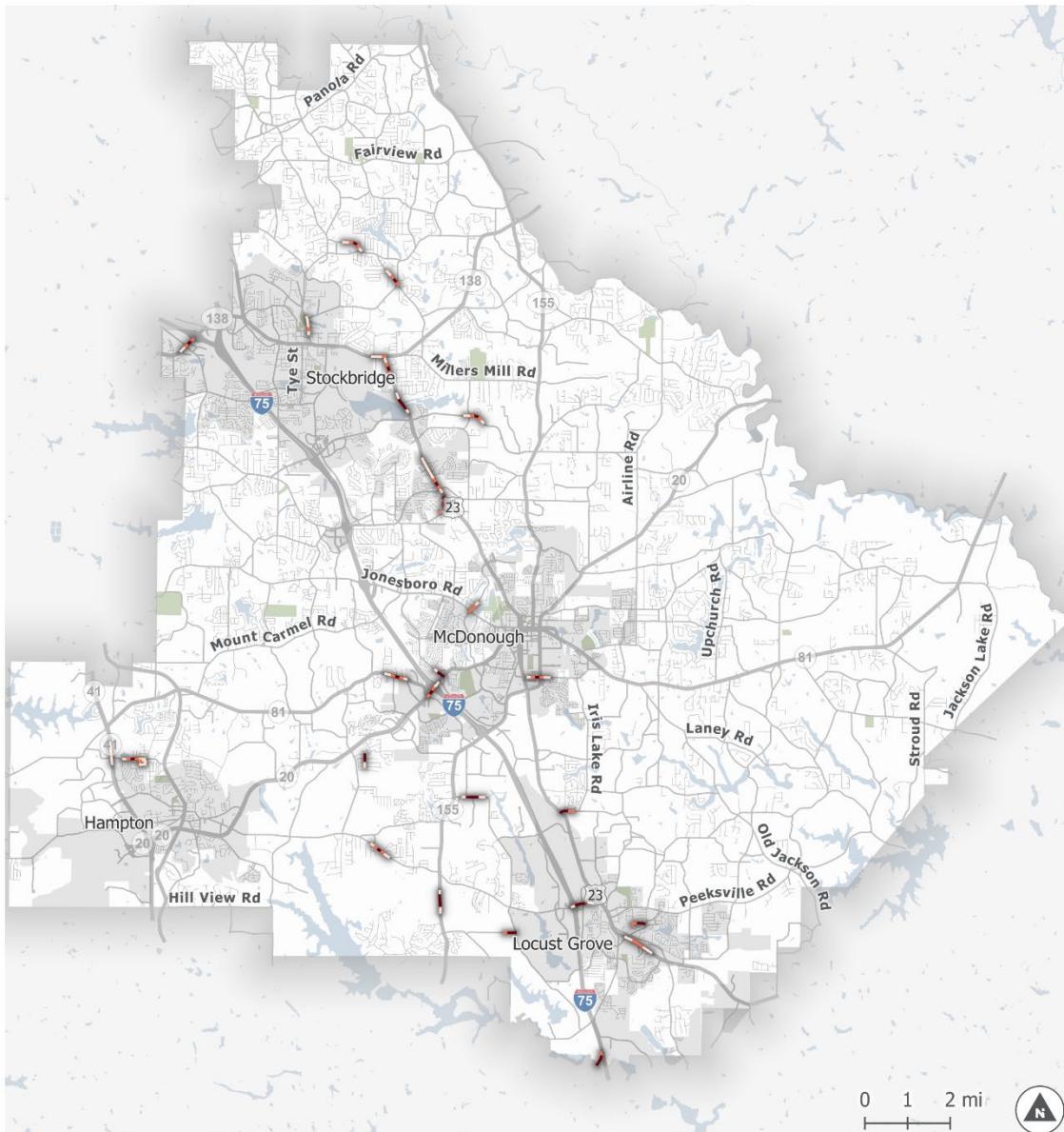
- Low
- Medium
- High
- Cities
- Henry County

TOOLE
DESIGN

HENRY COUNTY
TRANSPORTATION
SAFETY ACTION PLAN
mobility and safety for all

Figure 25 Sliding Window Analysis - Pedestrian (Locust Grove)

Sliding Window Analysis


Pedestrian (2019-2023)

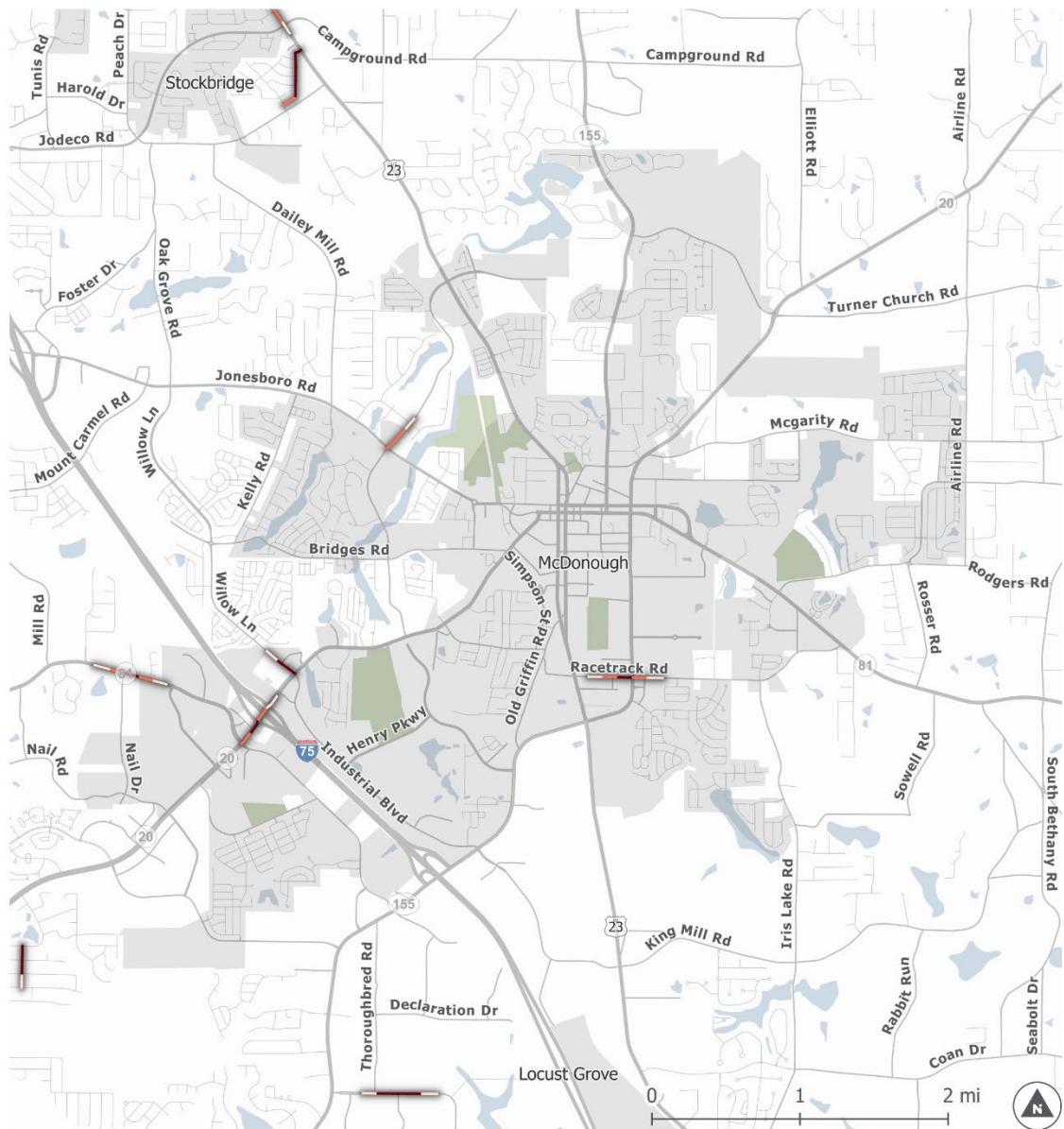
- Low
- Medium
- High
- Cities
- Henry County

TOOLE
DESIGN

HENRY COUNTY
**TRANSPORTATION
SAFETY ACTION PLAN**
mobility and safety for all

Figure 26 Sliding Window Analysis - Pedestrian (Hampton)

Sliding Window Analysis


Bicycle (2019-2023)

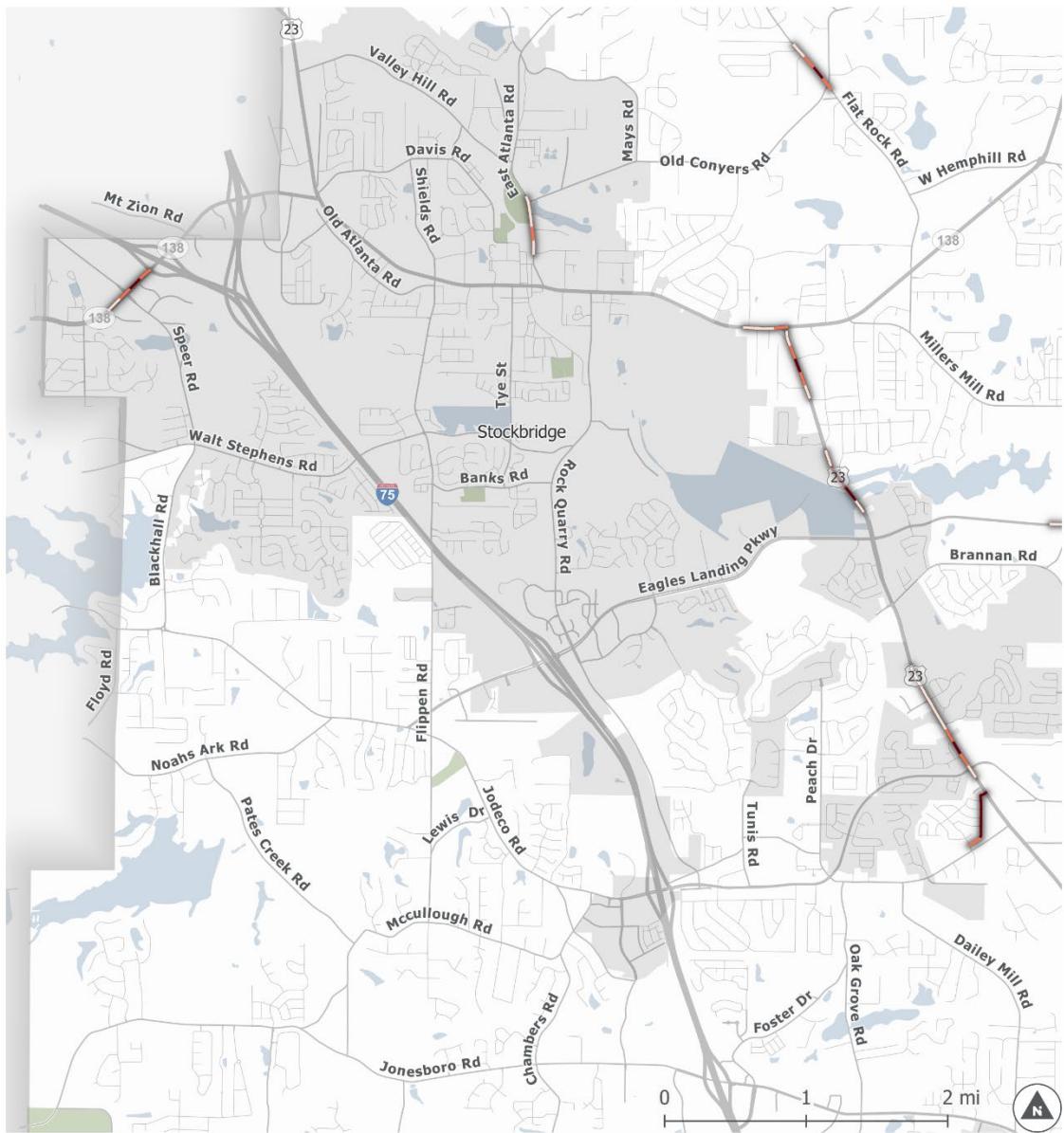
- Low
- Medium
- High
- Cities
- Henry County

**TOOLE
DESIGN**

HENRY COUNTY **TRANSPORTATION SAFETY ACTION PLAN**

Figure 27 Sliding Window Analysis - Bicycle (Henry County)

Sliding Window Analysis


Bicycle (2019-2023)

- Low
- Medium
- High
- Cities
- Henry County

TOOLE
DESIGN

HENRY COUNTY
**TRANSPORTATION
SAFETY ACTION PLAN**
mobility and safety for all

Figure 28 Sliding Window Analysis - Bicycle (McDonough)

Sliding Window Analysis

Bicycle (2019-2023)

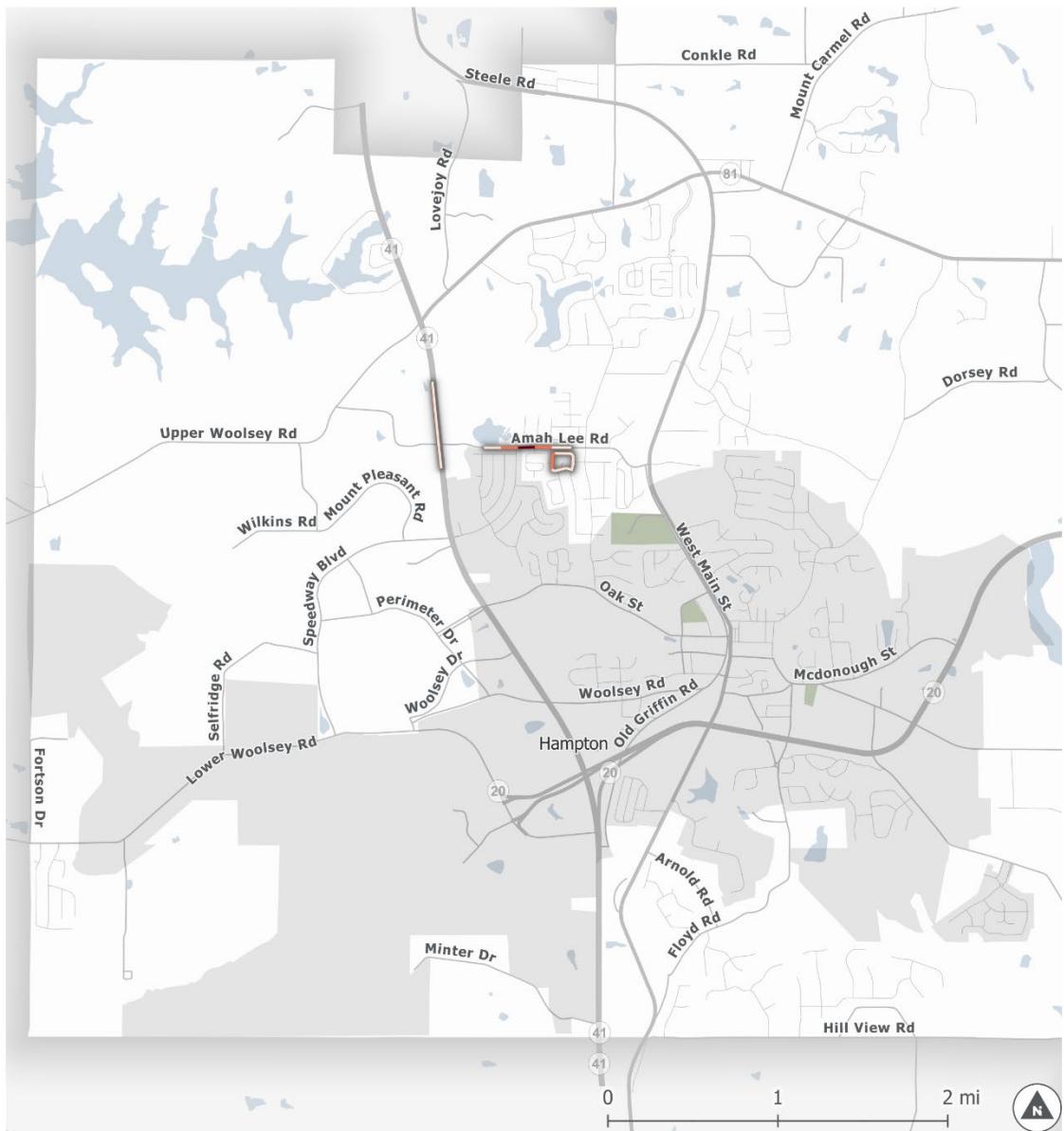
- Low
- Medium
- High
- Cities
- Henry County

TOOLE
DESIGN

HENRY COUNTY
**TRANSPORTATION
SAFETY ACTION PLAN**
mobility and safety for all

Figure 29 Sliding Window Analysis - Bicycle (Stockbridge)

Sliding Window Analysis


Bicycle (2019-2023)

- Low
- Medium
- High
- Cities
- Henry County

TOOLE
DESIGN

HENRY COUNTY
**TRANSPORTATION
SAFETY ACTION PLAN**
mobility and safety for all

Figure 30 Sliding Window Analysis - Bicycle (Locust Grove)

Sliding Window Analysis

Bicycle (2019-2023)

- Low
- Medium
- High
- Cities
- Henry County

TOOLE
DESIGN

HENRY COUNTY
**TRANSPORTATION
SAFETY ACTION PLAN**
mobility and safety for all

Figure 31 Sliding Window Analysis - Bicycle (Hampton)

HIGH RISK NETWORK REPORT

**HENRY COUNTY
TRANSPORTATION SAFETY ACTION PLAN**

Table of Contents

Introduction	4
Crash Data Sources and Limitations	4
Systemic Screening Factors	4
Analysis Process	5
Analysis Results	6
Motor Vehicles	6
Vulnerable Road Users	8
Motorcycles	9
High Risk Network	10

List of Abbreviations & Key Terms

AADT Annual Average Daily Traffic

VPD Vehicles Per Day

KABCO
Injury Severity Scale

K: Fatal
A: Incapacitating
B: Non-Incapacitating
C: Not visible but complains of pain
O: Uninjured or Property Damage Only

FSI Fatal or Serious Injury (K and A on the KABCO scale)

FI Fatal and All Injuries (K, A, B, and C on the KABCO scale)

GDOT Georgia Department of Transportation

Vulnerable Roadway User Pedestrian, bicyclist, or other Non-Automobile road user

Systemic screening factors Attributes of roadway facilities that have been found to correlate with high crash frequency. Also known as risk factors.

Introduction

The purpose of this memorandum is to document the systemic analysis process and results conducted as part of the Henry County Transportation Safety Action Plan (Henry County TSAP). This systemic analysis will help the agency identify roadway facilities with the greatest potential for safety improvements by identifying combinations of roadway attributes associated with fatal and serious injury crashes.

Crash Data Sources and Limitations

Crash data for the 5-year period of 2019-2023 was acquired from GDOT's AASHTOWare (formerly Numetric) crash query application. Local law enforcement agencies submit the crash reports that provide the raw crash data. Although crash reports are currently the best way to obtain information about a large number of crashes, they have limitations. Crash severity may have limited accuracy because those completing reports typically don't have medical training, and victims of crashes may be unaware of internal injuries when the police report is taken. The total number of crashes may be underreported due to fears, language barriers, financial concerns, and more. Crash reports may not capture the effects of speed in crashes, as the first responders are typically on the scene of a crash and witnesses outside a crash are not typically interviewed about operator speed. Even when crash reports are perfect, they do not record near misses or the self-limiting behavior of travelers who don't feel safe in currently configured networks. It is useful to keep these limitations in mind when using crash data and to vet data with priority populations as part of the planning process.

Systemic Screening Factors

One of the key outcomes of the systemic safety analysis is the identification of attributes of roadway facilities that have been found to correlate with high crash frequency. These are also known as **systemic screening factors** or **risk factors**. These factors are combined to identify roadway facility profiles, or common roadway types across the county, associated with higher crash frequencies. However, it is important to note that these correlations do not necessarily indicate a causal relationship, nor should these individual factors necessarily be the target of treatments. For example, though the presence of nearby pedestrian generators may be found as a factor that correlates with increased pedestrian crash frequencies, this does not mean that these generators should be removed, but instead that facilities near such generators may require additional safety investment.

Systemic screening factors and roadway facility profiles should be studied from a practical and policy-driven perspective to determine the components that may be reasonable targets of safety improvements and understand components that should be viewed as non-causal correlations. The analysis does not control for exposure of vehicles, pedestrians, or motorcycles.

Table 1 includes all roadway segment attributes that were prepared and identified as candidate risk factors for consideration in this analysis. Factors were limited by data quality and availability.

Table 1 Factors Screened for Systemic Analysis

Screening Factor	Description	Data Source
Land Use	Land use that the roadway segment is adjacent to	Henry County
Roadway Type*	State highways, feeder roads, subdivision roads, or unpaved roads. Private roads and limited access freeways are excluded from this study, and the other roadway types were used as a categorical variable in the analysis.	Henry County

Zero Vehicle Household Rate	Percent of households within the Census block group that have zero vehicles	Justice40 ¹
Population Below 2X Poverty Level	Percent of population within the Census block group at or below two times the poverty level	Justice40
Elderly Population Rate	Percent of population 65 years or older	Justice40
Sidewalk Presence**	Presence of sidewalk on roadway	Henry County
Traffic Volume Range	Average Annual Daily Traffic (AADT) of 0-1,500, 1,501-5,000, 5,001-10,000 or 10,000+	Henry County
Proximity to Schools	Whether a roadway segment is within a quarter mile of any schools	Henry County
Proximity to Parks	Whether a roadway segment is within a quarter mile of any parks	Henry County
Speed Limit	Speed limit ranges of ≤20 MPH, 25-30 MPH, 35-40 MPH, or 45+ MPH	Henry County
Lane Configuration	Number of lanes on the roadway	Henry County

Notes:

* Roadway Types drawn from Henry County GIS files as provided by the client.

** Sidewalk Presence accounts for either side of a roadway.

Analysis Process

The systemic analysis focused on the study period of 2019 through 2023. The target study roadway facilities included all public roadways except for access-controlled roads. Consolidated roadway data was analyzed to retain all relevant roadway cross-sectional and context attributes. Additional Census and network data attributes were applied to the segmented data as needed to include the screening factors.

The systemic analysis screening process is based on a decision tree machine learning algorithm where each factor is screened individually to determine whether the factor can be used to distinguish between locations with relatively high and low average crash densities per mile. The algorithm considers each unique classification individually for categorical factors such as roadway types. For numerical factors, such as the elderly population rate, all potential breakpoints by which the numerical values could be split are considered. The algorithm screens all factors recursively to identify the most correlated factor and continues until a set of factors is identified as a facility profile. Within a facility profile, categorical variables are mutually exclusive; continuous variables can have one or multiple ranges of values that fit within a facility profile.

Figure 1 illustrates the decision tree algorithm where three correlated factors define a high-risk facility profile.

¹ U.S. Department of Commerce. "Justice40." Retrieved January 2025 from <https://www.commerce.gov/justice40-initiative> [note that access to some Federal pages has been limited during January and February 2025.]

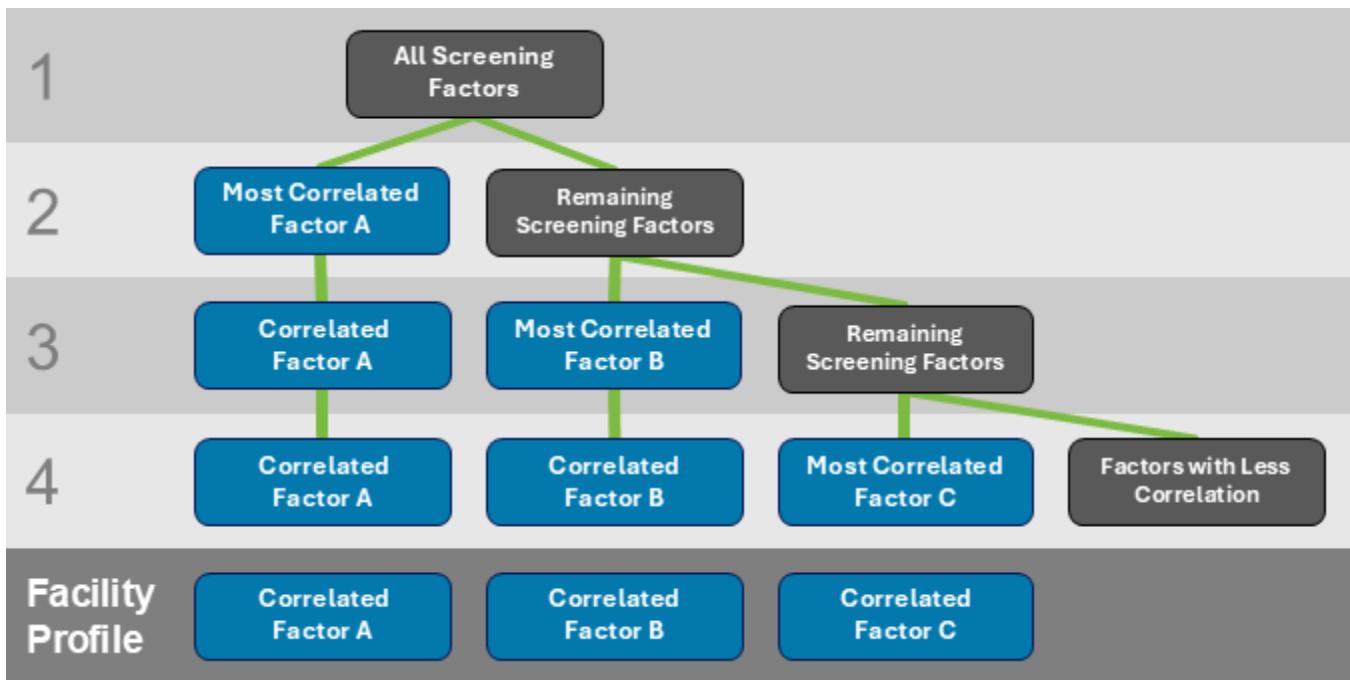


Figure 1 Illustration of Decision Tree Screening Process

Analysis Results

In the following subsections, systemic analysis results are broken out by crash mode, outlining the unique risk factors and their safety priority rankings associated with each unique facility profile. Each subsection provides definitions of unique facility profiles identified by the analysis and their associated risk factors, crash scores, and mileage metrics associated with these profiles. Profiles are grouped into risk tiers – critical, high, medium, low, or minimal – as relevant to each profile, highlighting the facilities associated with the highest to lowest crash risks. Tiers are differentiated by natural breaks in crashes per mile statistics (FSI crashes for motor vehicles; all injury severities for Vulnerable Road Users). Critical and high tiers provide the greatest priority for focusing on reducing risks associated with FSI crashes; medium and low tiers provide useful information to reduce risk opportunistically. Risk tiers are mutually exclusive for crash risks.

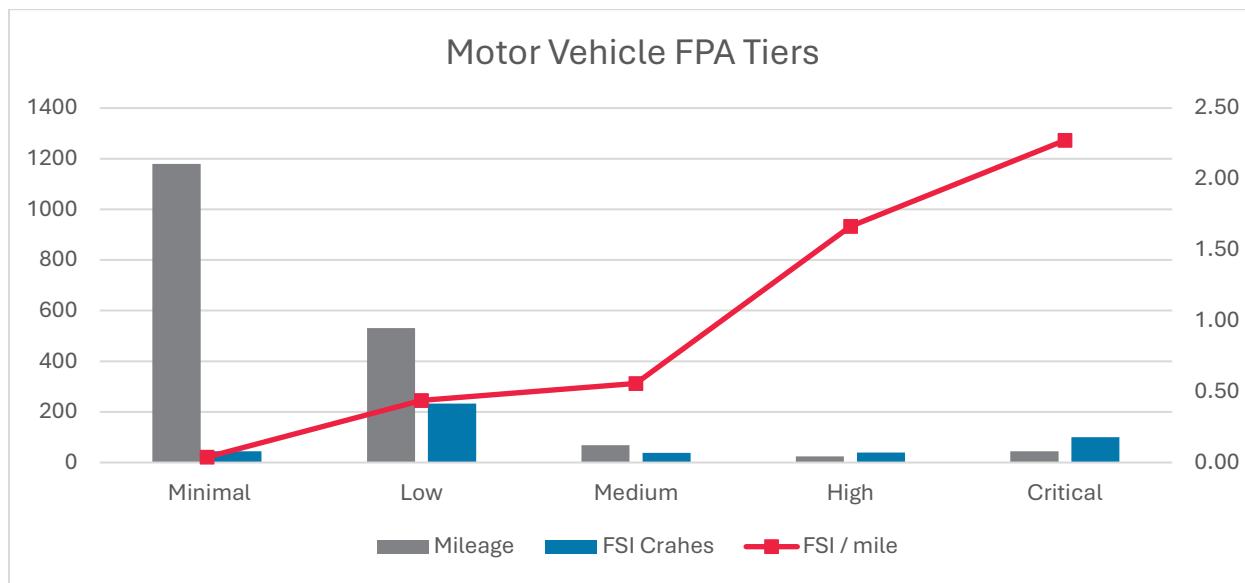
Based on these profiles and their tiers, we identified a network of roadway segments associated with higher levels of crash risks for all modes, as shown in the High Risk Network (HRN) maps in the next section.

Motor Vehicles

The tables and figure in this section represent results for the motor vehicles on roadways within Henry County. The analysis was conducted using fatal or serious injury (FSI) crashes. Crash profiles that are associated with elevated crash risks for motor vehicle FSI crashes are:

- **Critical Risk:**
 - State highways adjacent to non-residential land uses and a low percentage elderly population (<=13.5%)
- **High Risk:**
 - State highways adjacent to Census tracts where a high percentage of elderly population (>13.5%) and high vehicle ownership are present (<2.5% households own zero vehicles)

These critical and high risk profiles suggest that state highways can be the focus for reducing the risk of severe vehicle crashes, especially in areas where non-residential land uses and high vehicle ownership are present.


Table 2 Facility profile definitions for motor vehicle FSI crashes

Crash Risk Tier	State Highways	% Elderly Population	Land Use	Speed Limit	% Zero Vehicle Ownership
Critical	Yes	<=13.5%	Not Residential		
High	Yes	>13.5%			<=2.5%
Medium	Yes	<=13.5%	Residential		
Low	No			<=20 MPH	
Minimal	No			25-30 MPH	

Within Henry County (Table 3), **critical risk facilities** comprise 2.4% (44 miles) of total county roadway mileage and are associated with 21% of all vehicle FSI. **High risk facilities** comprise 1.3% (24 miles) of total county roadway mileage and are associated with 8.4% of all vehicle FSI.

Table 3 Facility profile metrics for motor vehicle crashes

Tier	Mileage	Vehicle FSI	Mileage Share	Vehicle FSI Share	FSI / Mile
Critical	44	100	2.4%	21.0%	2.27
High	24	40	1.3%	8.4%	1.67
Medium	68	38	3.70%	12.2%	0.56
Low	531	233	28.8%	49.0%	0.44
Minimal	1180	45	63.9%	9.4%	0.04

Figure 2 Motor Vehicle Facility Profile Analysis Tiers

Vulnerable Road Users

The tables in this section represent results for the Vulnerable Road User (VRU) modes (pedestrians and bicyclists) on roadways within Henry County. Because VRU crashes that resulted in fatal and severe injuries are relatively low when comparing to vehicle FSI crashes, the VRU analysis was conducted using crashes of all injury severities that involved VRUs. Crash profiles that are associated with elevated crash risks for VRU injury crashes are:

- **Critical Risk:**

- State highways adjacent to Census tracts where high poverty rates are present (> 40.5% of population with income below 200% of poverty level)

- **High Risks:**

- State highways adjacent to Census tracts where sidewalks and low poverty rates are present
- Non-state highways adjacent to commercial land uses, where the posted speed limit is 35 MPH or higher, and where the elderly population is low (<=8.5%)

Within Henry County, **critical risk facilities** comprise 1.1% (20 miles) of total county roadway mileage and are associated with 12.6% of all VRU injury crashes. **High risk facilities** comprise 1.5% (26 miles) of total county roadway mileage and are associated with 13.7% of all VRU injury crashes. Henry County has two tiers of high risk facilities to differentiate between different facilities that are both prominent within the model; prominence was determined by data distribution and the insightfulness of the profiles.

These critical and high risk profiles suggest that state highways where sidewalk is already present can benefit from further pedestrian infrastructure; traffic calming and speed reduction in commercial areas can also help reduce VRU crash risks.

Table 4 Facility profile definitions for motor vehicle FSI crashes

Crash Risk Tier	State Highways	Poverty Rate	Sidewalk Presence	Land Use	% Elderly Population	Posted Speed
Critical	Yes	>40.5%				
High 1	Yes	<=40.5%	Yes			
High 2	No			Commercial	<=8.5%	>=35 MPH
Medium	Yes	<=40.5%	No			
Low	No			Commercial	>8.5%	>=35 MPH
Minimal	No					

Table 5 Facility profile metrics for motor vehicle crashes

Tier	Mileage	VRU Injury Crashes	Mileage Share	VRU Injury Share	Injuries / Mile
Critical	20	18	1.1%	12.6%	0.90
High 1	14	11	0.8%	7.6%	0.79
High 2	12	9	0.7%	6.1%	0.75
Medium	102	25	5.5%	17.4%	0.25
Low	60	15	3.2%	10.0%	0.25
Minimal	1639	67	88.8%	46.1%	0.04

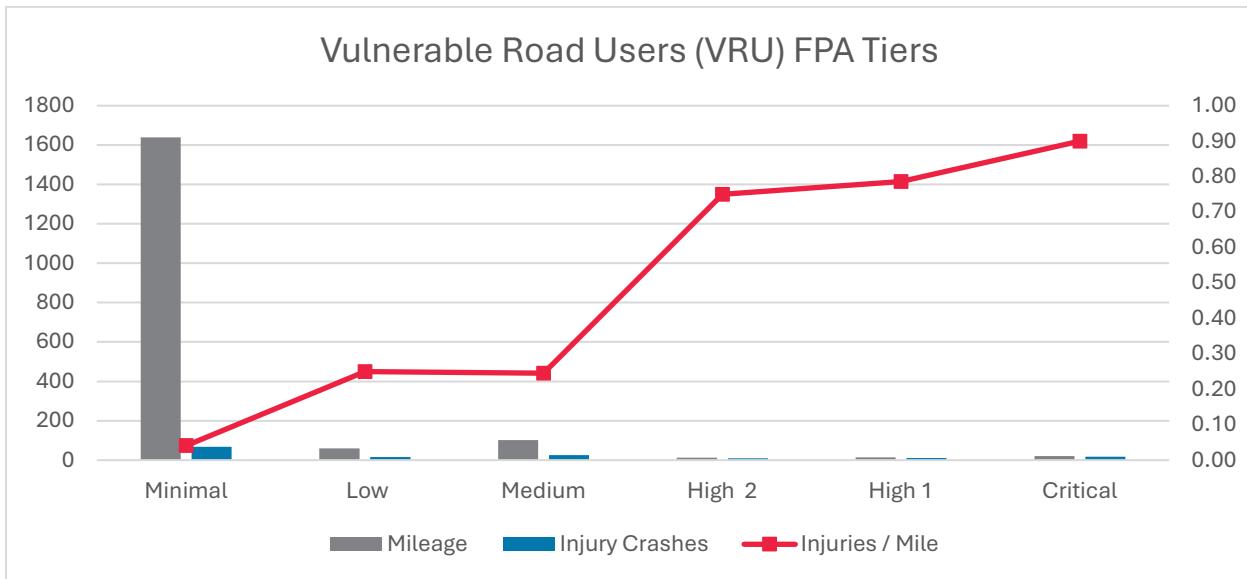


Figure 3 Vulnerable Road Users (VRU) Facility Profile Analysis Tiers

Motorcycles

The tables and figure in this section represent results for the motorcycle mode on roadways within Henry County. The analysis was conducted using crashes of all injury severities that involved motorcyclists. Crash profiles that are associated with elevated crash risks for motorcycle injury crashes are:

- **Critical risk:**
 - Multi-lane, high-speed roads adjacent to commercial land use
- **High Risk:**
 - Two-lane, high-speed roads adjacent to commercial land use

Within Henry County, **critical risk facilities** comprise 0.9% (16 miles) of total county roadway mileage and are associated with 8.9% of all motorcycle injury crashes. **High risk facilities** comprise 5.6% (103 miles) of total county roadway mileage and are associated with 30.8% of all vehicle FSIs.

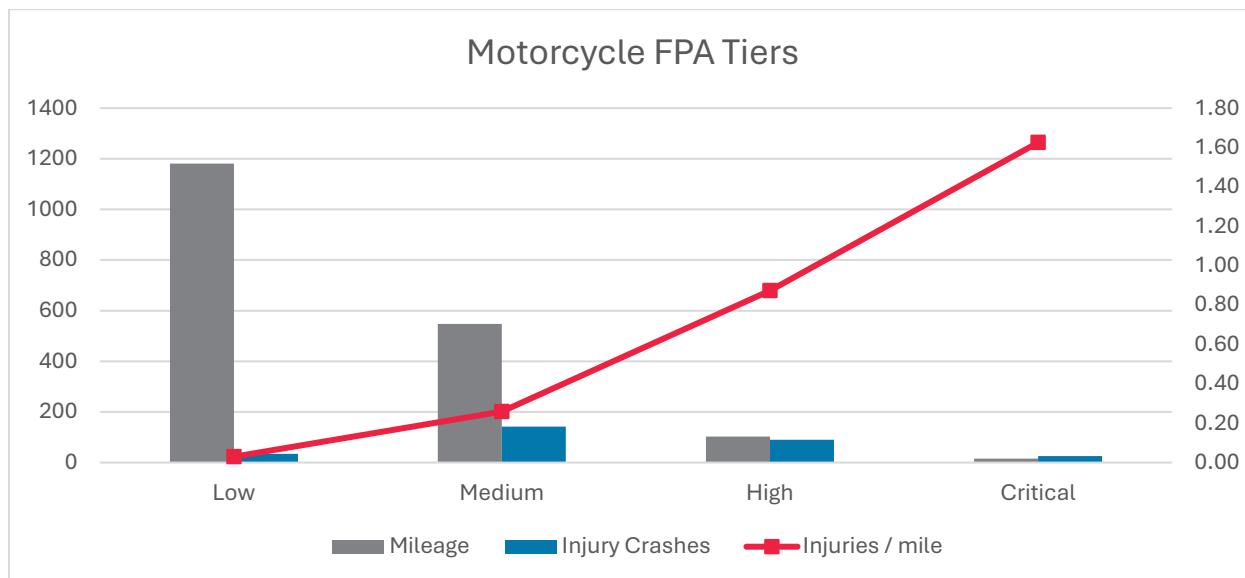

These critical and high risk profiles suggest that high-speed roadways with a posted speed limit of 35 MPH or above can be the focus for reducing the risk of motorcycle crashes, especially in areas where commercial land use is present.

Table 6 Facility profile definitions for motor vehicle FSI crashes

Crash Risk Tier	Land Use	Number of Lanes	Posted Speed
Critical	Commercial	>=3	>=35 MPH
High	Commercial	<=2	>=35 MPH
Medium	Not Commercial		>=35 MPH
Low			25-30 MPH

Table 7 Facility profile metrics for motor vehicle crashes

Tier	Mileage	Motorcycle Injury Crashes	Mileage Share	Motorcycle Injury Share	Injuries / Mile
Critical	16	26	0.9%	8.9%	1.63
High	103	90	5.6%	30.8%	0.87
Medium	548	142	29.7%	48.3%	0.26
Low	1181	35	64.0%	11.9%	0.03

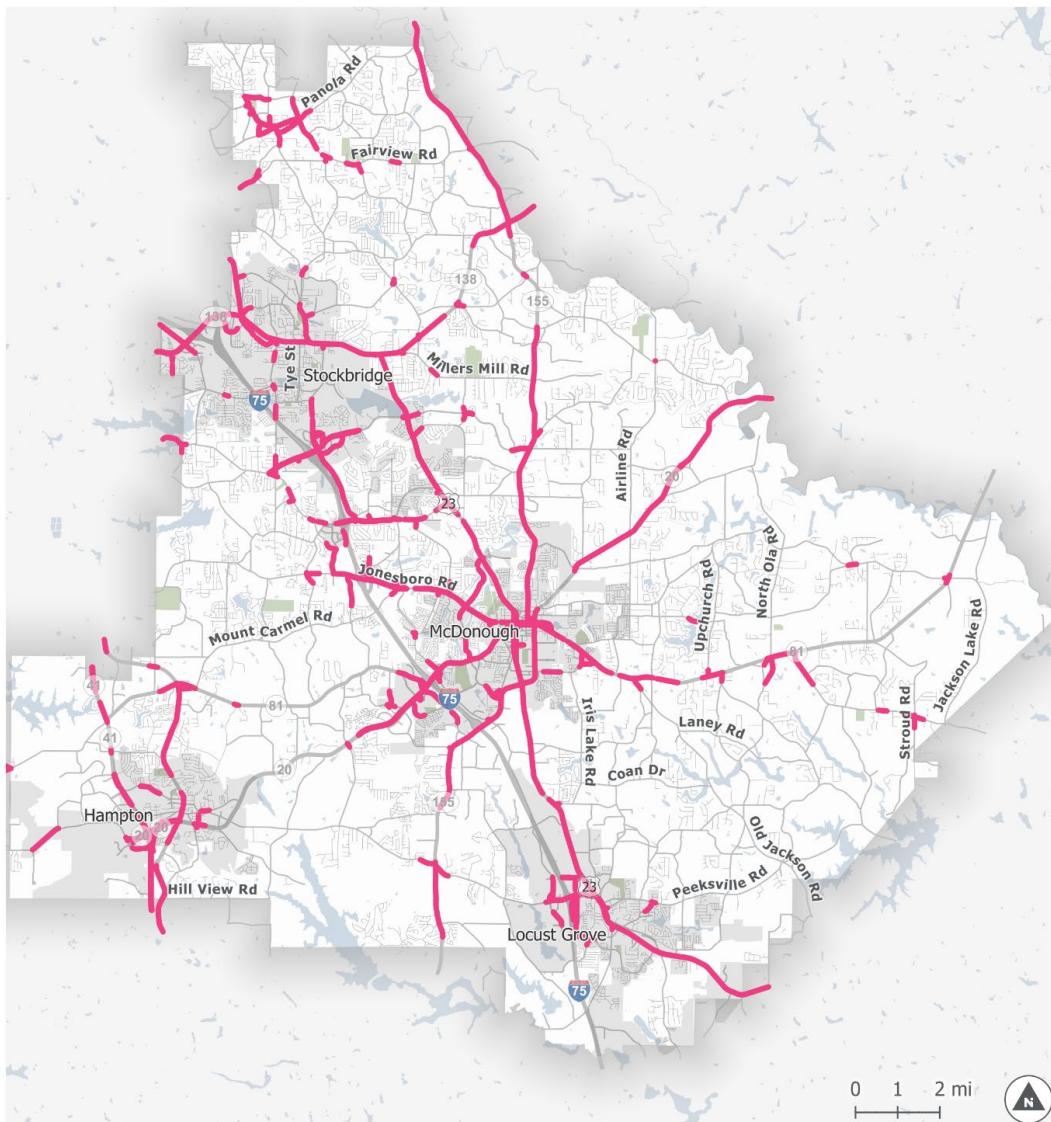
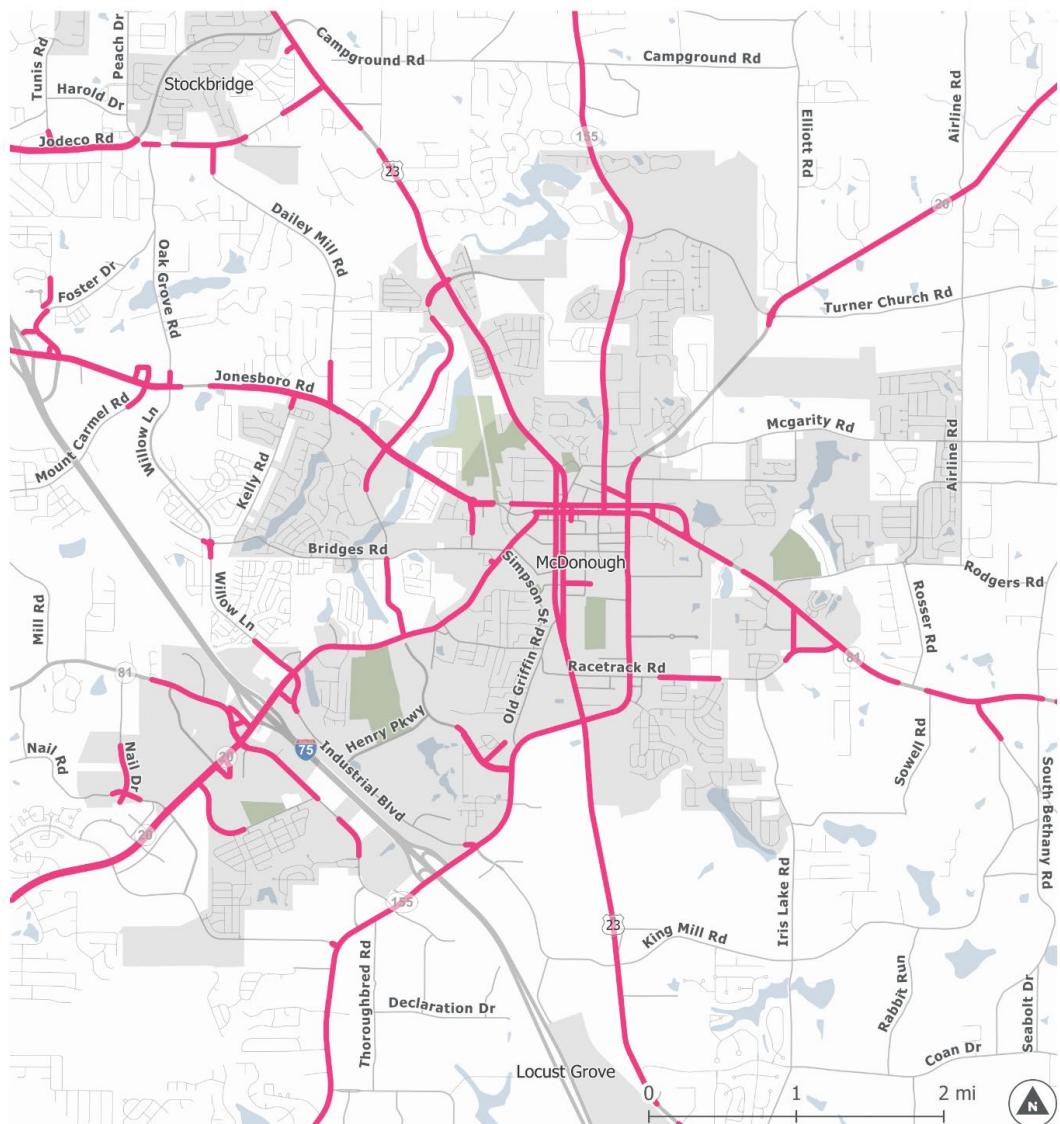


Figure 4 Motorcycle Facility Profile Analysis Tiers

High Risk Network

The critical and high risk tier facilities from the motor vehicle, VRU, and motorcycle systemic analyses are combined to create the High Risk Network (HRN) for Henry County. The HRN accounts for 166 miles (9%) of the county roadway mileage. The Henry County HRN is comprised of:

- State highways adjacent to non-residential land uses and a low percentage elderly population.
- State highways adjacent to Census tracts where a high percentage of elderly population and high vehicle ownership are present.
- State highways adjacent to Census tracts where high poverty rates are present.
- State highways adjacent to Census tracts where sidewalks and low poverty rates are present.
- Non-state highways adjacent to commercial land uses, where the posted speed limit is 35 MPH or higher, and where the elderly population is low.
- Multi-lane, high-speed roads adjacent to commercial land use.
- Two-lane, high-speed roads adjacent to commercial land use.


All Mode High Risk Network

- All Mode HRN
- Cities
- Henry County

TOOLE
DESIGN

HENRY COUNTY
TRANSPORTATION
SAFETY ACTION PLAN
mobility and safety for all

Figure 5 All Mode High Risk Network (Henry County)

All Mode High Risk Network

— All Mode HRN

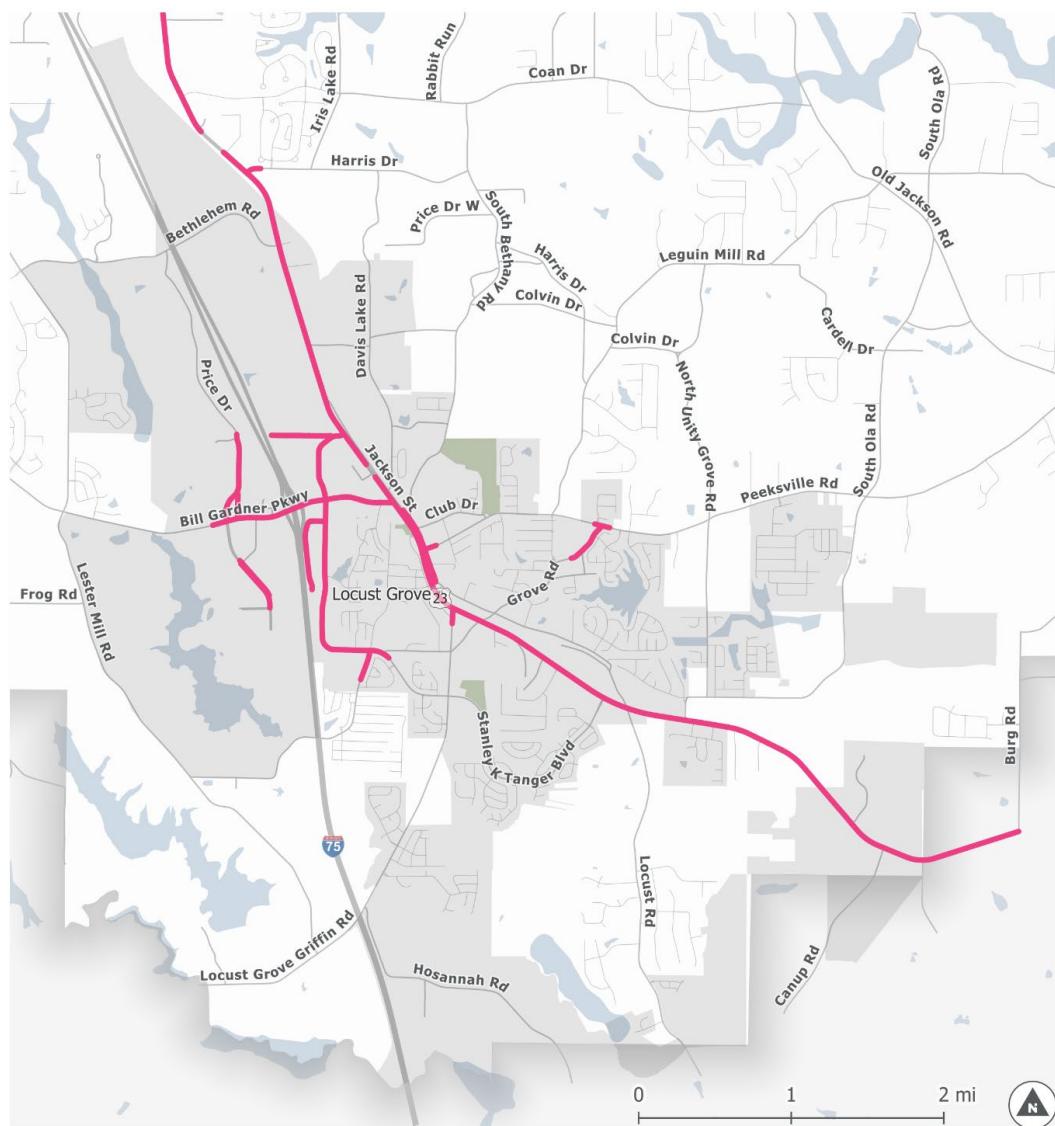

□ Henry County

■ Cities

TOOLE
DESIGN

HENRY COUNTY
**TRANSPORTATION
SAFETY ACTION PLAN**
mobility and safety for all

Figure 6 All Mode High Risk Network (City of McDonough)

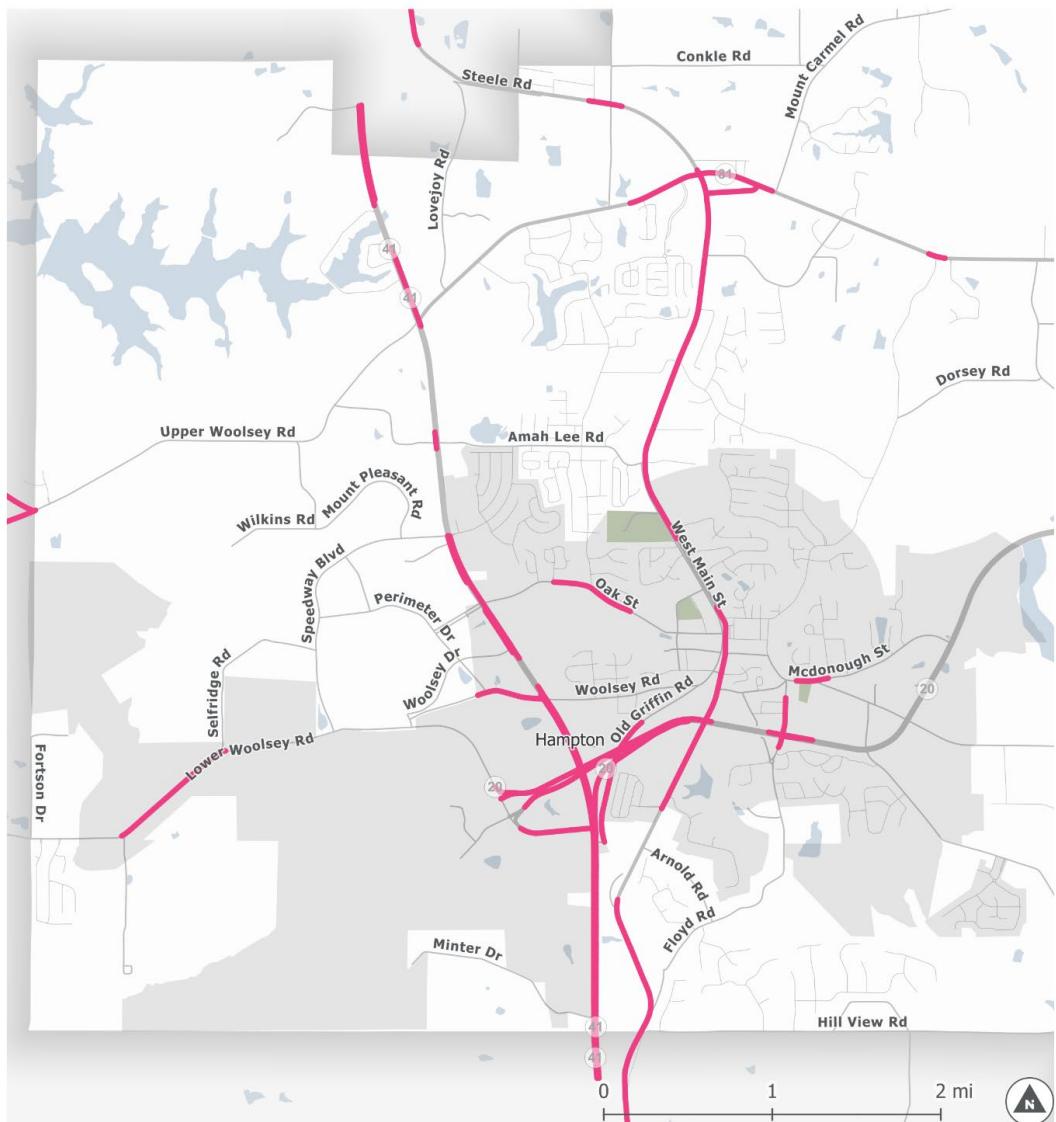

All Mode High Risk Network

- All Mode HRN
- Cities
- Henry County

TOOLE
DESIGN

HENRY COUNTY
**TRANSPORTATION
SAFETY ACTION PLAN**
mobility and safety for all

Figure 7 All Mode High Risk Network (City of Stockbridge)



All Mode High Risk Network

- All Mode HRN
- Cities
- Henry County

TOOLE DESIGN
HENRY COUNTY
TRANSPORTATION SAFETY ACTION PLAN
mobility and safety for all

Figure 8 All Mode High Risk Network (City of Locust Grove)

All Mode High Risk Network

- All Mode HRN
- Cities
- Henry County

Figure 9 All Mode High Risk Network (City of Hampton)

DEMOGRAPHICS ANALYSIS REPORT

HENRY COUNTY TRANSPORTATION SAFETY ACTION PLAN

Prepared by:

Modern Mobility Partners
730 Peachtree St., NE, Ste. 650
Atlanta, GA 30308
www.modernmobilitypartners.com

Prepared for:

Henry County
140 Henry Parkway
McDonough, GA, 30253
<https://www.henrycountyga.gov/>

Disclaimer: This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential and exempt from disclosure under applicable law. Any dissemination, distribution or copying of this document is strictly prohibited.

Table of Contents

1	Introduction.....	1
2	Data Sources.....	2
2.1	Demographic Data.....	2
2.2	Crash Data	3
2.3	High Injury Network and High Risk Network.....	3
2.4	Planned and Programmed Projects.....	3
3	Demographic Focus Areas	4
3.1	Henry County Overview	4
3.2	Henry County in Metro Atlanta.....	6
4	Demographic Crash Analysis.....	8
4.1	Overall Crash Trends.....	8
4.2	Crashes by Mode.....	11
4.3	Crash Findings Among Cities	15
5	High Injury Network and High Risk Network.....	17
6	Planned and Programmed Projects	18
6.1	TIP and SPLOST Projects.....	18
6.2	CTP Projects.....	19
7	Summary.....	20

List of Abbreviations & Key Terms

FSI	Fatal or Serious Injury (K and A on the KABCO scale)
FI	Fatal and All Injuries (K, A, B, and C on the KABCO scale)
FSI Rate	The percentage of crashes that resulted in an FSI; calculated as [FSI Crashes] / [Total Number of Crashes]
FSI # per Mile	The number of FSI crashes normalized by the centerline mileage
KABCO	Injury Severity Scale
K	Fatal
A	Serious Injury
B	Minor Injury
C	Possible Injury
O	No Injury
Motor Vehicle	All types of Motor Vehicles, excluding Motorcycles

1 INTRODUCTION

The U.S. Department of Transportation (USDOT) Safe Streets and Roads for All (SS4A) program provides funding for comprehensive safety action plans, the program's basic building block to improve roadway safety.¹ Comprehensive safety action plans are required to include various components, including crash analyses and recommendations with consideration for demographics and equity.²

Research has consistently shown that communities with higher populations of vulnerable groups, such as racial and ethnic minorities and low-income households, often face disproportionate transportation safety risks due to several factors. These include historical underinvestment in infrastructure, higher exposure to high-speed arterial roads, and limited access to safe pedestrian and bicycle facilities. As a result, these disadvantaged communities typically experience higher rates of crashes, injuries, and fatalities while having fewer resources to advocate for safety improvements.³

In support of the Henry County Transportation Safety Action Plan (Henry County TSAP), this report summarizes transportation safety challenges for vulnerable populations in Henry County. This report takes a data-driven approach to identify whether certain communities face a disproportionate risk of crashes through three primary analyses:

- Identify areas with higher populations of certain demographic focus groups using the Atlanta Regional Commission (ARC) Equity Analysis Scores.⁴
- Evaluate crash patterns, including incident rates, severity levels, and crash types between disadvantaged and non-disadvantaged areas.
- Assess where transportation projects have been planned and programmed, with consideration for these demographic classes.

¹ USDOT, Comprehensive Safety Action Plans (2025), <https://www.transportation.gov/grants/ss4a/comprehensive-safety-action-plans>

² USDOT, Safe Streets and Roads for All Action Plan Components (2022), https://www.transportation.gov/sites/dot.gov/files/2022-06/SS4A_Action_Plan_Components.pdf

³ USDOT, Traffic Safety Facts (2021), <https://crashstats.nhtsa.dot.gov/Api/Public/ViewPublication/813118>

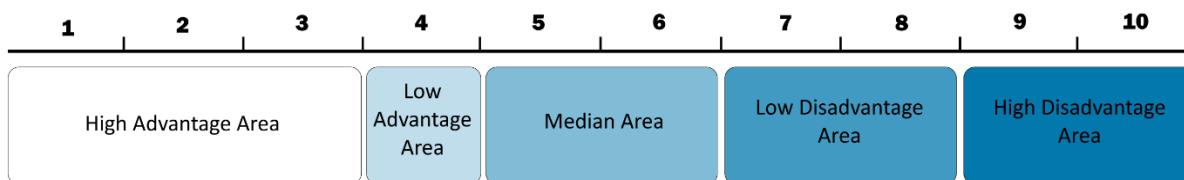
⁴ ARC, ARC Equity Analysis (2025), <https://opendata.atlantaregional.com/datasets/GARC::arc-equity-analysis-/about>

2 DATA SOURCES

Table 1 shows the data sets and corresponding data sources used to support this demographic analysis.

Table 1: Data sources for various datasets

DATA SET	DATA SOURCE
DEMOGRAPHICS DATA	ARC
CRASH DATA	Georgia Department of Transportation's (GDOT) AASHTOware Crash Query application
HIGH INJURY NETWORK (HIN) AND HIGH RISK NETWORK (HRN)	<i>Developed as part of the TSAP Safety Analysis</i>
PLANNED AND PROGRAMMED PROJECTS	Henry County
COMPREHENSIVE TRANSPORTATION PLAN (CTP) PROJECTS	Henry County


2.1 Demographic Data

Census tracts were categorized into different classes of relative “advantage” or “disadvantage” using scores from the ARC Equity Analysis.⁴ This Equity Analysis dataset has been widely used throughout the agency to demonstrate compliance with federal guidance, including but not limited to Title VI of the Civil Rights Act of 1964. The scores have also traditionally been used as a reference for social equity criteria to prioritize projects in the Transportation Improvement Program (TIP).⁵

ARC’s Equity Analysis generates scores using American Community Survey (ACS) data at the Census tract level with a wide range of demographic characteristics. ARC examines **racial minority**, **ethnic minority**, and **low-income populations** as indicators of the greatest inequality in the Atlanta region.⁶

For the TSAP’s Demographic Analysis, these three scores were used to calculate the composite score for each Census tract. Then, Census tracts were categorized into five groups, or demographic classes, based on natural breaks in the composite scores. These categories are shown in **Figure 1** and **Table 2**.

Figure 1: Demographics Classification of Census Tracts

⁵ ARC, The ARC TIP Project Evaluation Framework (2019), <https://cdn.atlantaregional.org/wp-content/uploads/project-eval-documentation-2019-1.pdf>

⁶ ARC, Equity Analyses Methodology (2019), <https://cdn.atlantaregional.org/wp-content/uploads/arc-equity-methodology-june2019.pdf>

Table 2: Demographics Classification of Census Tracts

DEMOGRAPHIC CLASS	COMPOSITE SCORE	DESCRIPTION
HIGH ADVANTAGE AREA	Below or equal to 3	The percentage of the population that is disadvantaged is significantly lower than is typical for the Atlanta metropolitan area.
LOW ADVANTAGE AREA	Equal to 4	The percentage of the population that is disadvantaged is lower than is typical for the Atlanta metropolitan area.
MEDIAN AREA	Greater than 4 and below or equal to 6	The percentage of the population that is disadvantaged is typical for Census tracts in the Atlanta metropolitan area.
LOW DISADVANTAGE AREA	Greater than 6 and below or equal to 8	The percentage of the population that is disadvantaged is higher than is typical for the Atlanta metropolitan area.
HIGH DISADVANTAGE AREA	Greater than 8	The percentage of the population that is disadvantaged is significantly higher than is typical for the Atlanta metropolitan area.

2.2 Crash Data

Henry County crash data for the 5-year period of 2019-2023 was acquired from the GDOT AASHTOWare (formerly Numetric) crash query application. More information about the crash data used for the TSAP is available in the Descriptive Crash Analysis Report.

2.3 High Injury Network and High Risk Network

The High Injury Network (HIN) and High Risk Network (HRN) were developed as part of the safety analysis tasks during the development of the Henry County TSAP. This analysis compares the HIN and HRN mileage to the total network mileage among different demographic classes to assess the risk of crashes.

2.4 Planned and Programmed Projects

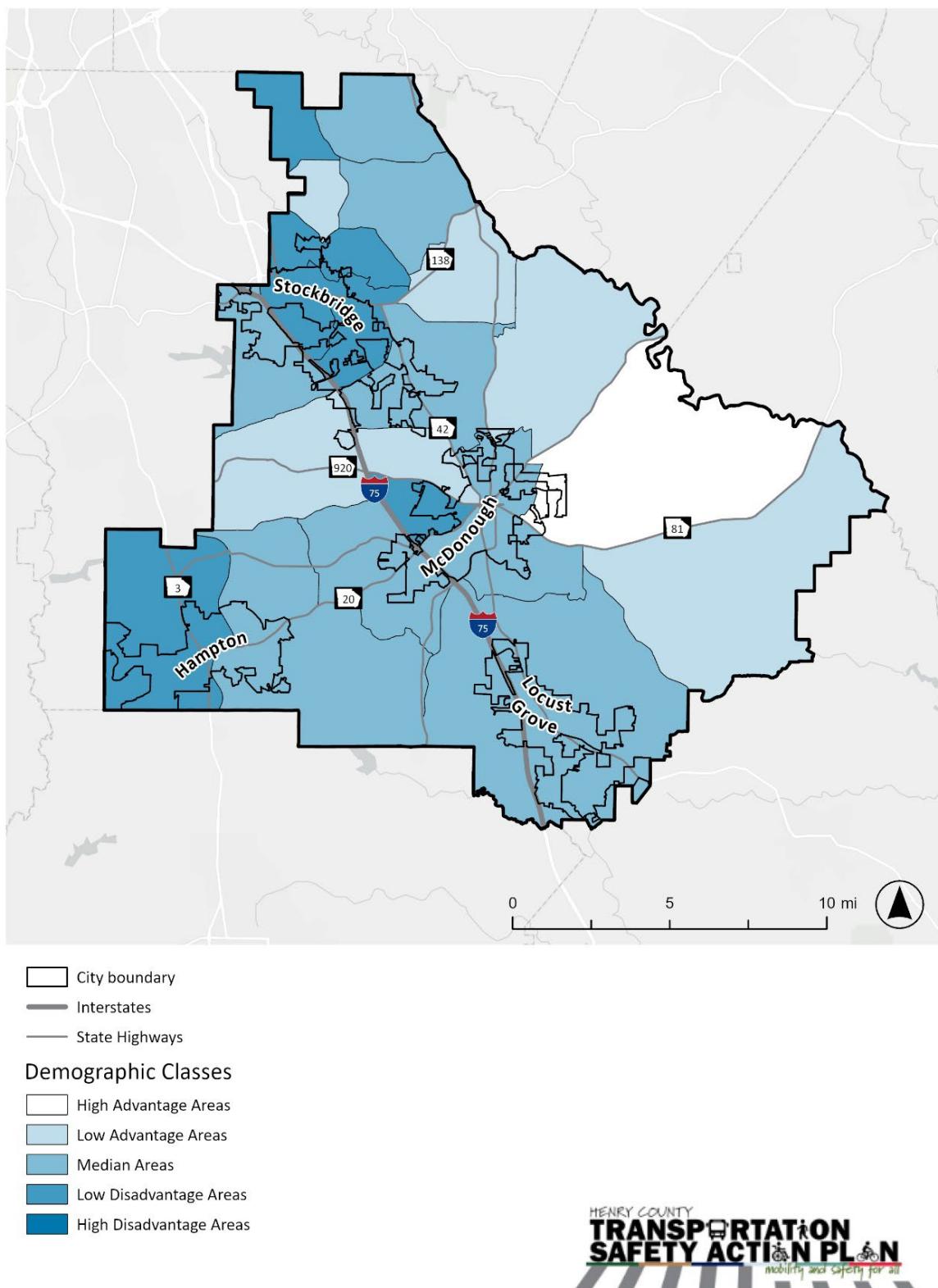
The planned and programmed projects and the Comprehensive Transportation Plan (CTP) data were made available by Henry County staff. This analysis focuses on planned and programmed projects across the county to evaluate variations in infrastructure investments among different demographic classes.

3 DEMOGRAPHIC FOCUS AREAS

3.1 Henry County Overview

Table 3 presents the demographic analysis classes of Census tracts across Henry County. There are 25 Census tracts in Henry County. A large portion (44%) of Henry County's Census tracts is classified as Median Areas, meaning their percentage of vulnerable populations is typical for the Atlanta region. The county's remaining Census tracts include 7 (28%) Low Disadvantage Area tracts, 6 (24%) Low Advantage Area tracts, and only 1 (4%) High Advantage Area tract. Notably, no Census tracts in Henry County fall into the High Disadvantage category. Nearly half of Henry County's residents live in Median Area Census tracts, while 8% reside in High Advantage Area, 21% in Low Advantage Area, and 22% in Low Disadvantage Area Census tracts.

Table 3: Distribution of Census Tracts by Demographics Classes in Henry County


DEMOGRAPHIC CLASS	NUMBER OF HENRY COUNTY CENSUS TRACTS (%)	POPULATION (%)
HIGH ADVANTAGE AREAS	1 (4%)	18,312 (8%)
LOW ADVANTAGE AREAS	6 (24%)	48,137 (21%)
MEDIAN AREAS	11 (44%)	110,151 (49%)
LOW DISADVANTAGE AREAS	7 (28%)	48,756 (22%)
HIGH DISADVANTAGE AREAS	0 (0%)	-

The spatial distribution of Census tracts by demographic classes across Henry County and its cities is shown in Figure 2. Large portions of the city limits of Hampton and Stockbridge include Low Disadvantage Census tracts. The remaining portions of these cities include Median Areas, meaning the population in these areas has a demographic makeup similar to the rest of the Atlanta Metropolitan area.

Northwest McDonough city limits include Low Disadvantage Areas, and the city's east edge is part of a High Advantage Census tract. The majority of McDonough includes Census tracts categorized as Median Areas. Locust Grove's city limits are completely within a Median Area Census tract.

In contrast, unincorporated areas of Henry County generally encompass more Census tracts categorized as Low Advantage and High Advantage, especially in the eastern portion of the county. These patterns suggest that populations of demographic groups that face inequality are more concentrated in the county's urban centers than in its unincorporated regions.

Figure 2: Demographics across Henry County and its Cities

3.2 Henry County in Metro Atlanta

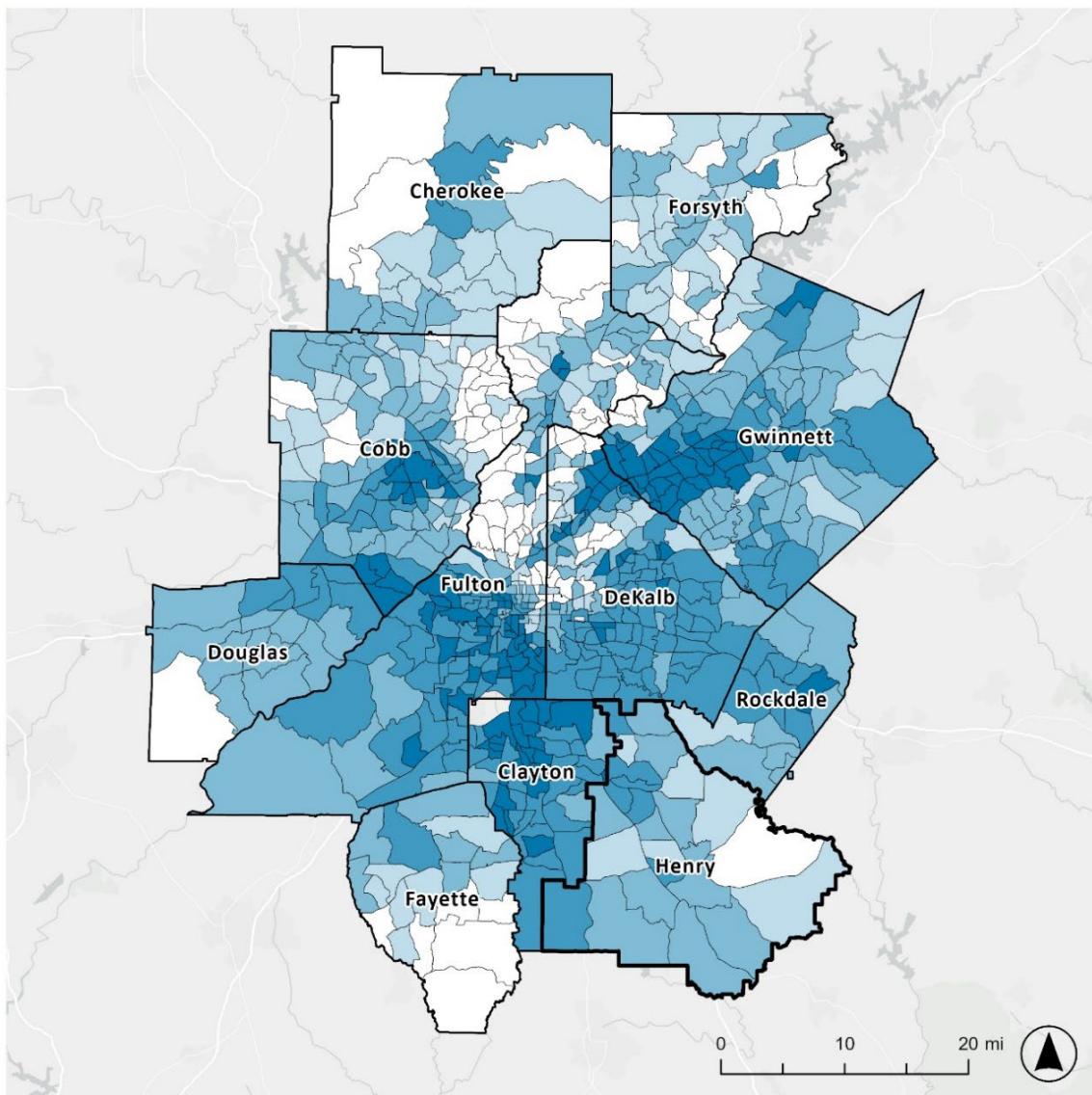

Table 4 compares the demographic classes of Census tracts in Henry County to those across the greater Atlanta Metropolitan area. The proportion of Census tracts in Henry County that are Low Disadvantaged is similar to the broader Metro Atlanta area, with 28% of Henry County Census tracts compared to the metro's 27%. However, in contrast to Henry County, the Metro Atlanta region has a more pronounced presence of High Advantage Census tracts (13%, 105 tracts) and High Disadvantage Census tracts (17%, 136 tracts), showing greater regional disparities than in Henry County.

Table 4: Distribution of Census Tracts by Demographics Classes in Metro Atlanta

DEMOGRAPHIC CLASS	NUMBER OF HENRY COUNTY CENSUS TRACTS (%)	NUMBER OF METRO ATLANTA CENSUS TRACTS (%)
HIGH ADVANTAGE AREAS	1 (4%)	105 (13%)
LOW ADVANTAGE AREAS	6 (24%)	120 (15%)
MEDIAN AREAS	11 (44%)	207 (27%)
LOW DISADVANTAGE AREAS	7 (28%)	212 (27%)
HIGH DISADVANTAGE AREAS	0 (0%)	136 (17%)

Figure 3 shows the spatial distribution of Census tracts by demographic classes across Henry County and Metro Atlanta. Henry County is outlined in black in the southeastern portion of the Metro Atlanta region. Compared to Henry County, Clayton and Gwinnett Counties have higher concentrations of Disadvantaged Areas in terms of the number and geographic area of Census tracts, particularly in northern Clayton and eastern Gwinnett, where many census tracts are classified as High Disadvantage Areas. In contrast, Fayette, Forsyth, and Cherokee County have a notable number of Census tracts identified as High Advantage Areas. Additionally, Cobb and Fulton counties display more pronounced demographic contrasts, with Census tracts ranging from High Advantage to High Disadvantage Areas.

Figure 3: Demographic Classes Across Counties in the Atlanta Region

Demographic Classes

- High Advantage Areas
- Low Advantage Areas
- Median Areas
- Low Disadvantage Areas
- High Disadvantage Areas

4 DEMOGRAPHIC CRASH ANALYSIS

4.1 Overall Crash Trends

From 2019 to 2023, there were 46,927 crashes on roadways in Henry County. Of these, 150 were fatal, and 601 resulted in serious injuries, accounting for 1.6% of all crashes. The majority of the crashes resulted in no injury (33,356), accounting for almost 71 percent of the crashes. More information about Henry County's crash statistics is available in the Descriptive Crash Analysis Report.

Table 5 summarizes crash data by demographic classes in Henry County. Over 22% of all crashes occurred in Low Disadvantage Areas. The number of crashes for each demographic class was normalized by road network mileage to account for differences in roadway networks across Census tracts. This approach gives crashes per centerline mile, which serves as a useful metric in the absence of roadway traffic volume data and aligns with the Federal Highway Administration (FHWA) Safety Analysis guidance.⁷ Despite a relatively similar number of crashes across demographic classes, the data reveals an increase in crashes per centerline mile as the percentage of the Census tract's vulnerable population increases. There are 30 crashes per mile in Low Disadvantage Areas compared to 7 crashes per mile in High Advantage Areas. This is likely due to the presence of urban centers in the Disadvantaged Areas and their proximity to the interstate, resulting in higher traffic volumes and thereby increasing the likelihood of crashes.

Table 5: Crashes Across Demographic Classes

	NUMBER OF CRASHES (%)	NUMBER OF CENSUS TRACTS (%)	NUMBER OF CRASHES PER CENSUS TRACT	CENTERLINE MILEAGE	NUMBER OF CRASHES PER MILE
HIGH ADVANTAGE AREA	1,269 (2.7%)	1 (4%)	1,269	175.0 miles	7
LOW ADVANTAGE AREA	7,819 (16.7%)	6 (24%)	1,303	462.3 miles	17
MEDIAN AREA	27,317 (58.2%)	11 (44%)	2,483	975.9 miles	28
LOW DISADVANTAGE AREA	10,521 (22.4%)	7 (28%)	1,503	345.8 miles	30
HIGH DISADVANTAGE AREA	-	0 (0%)		-	-
HENRY COUNTY	46,926	25	1,877	1,959 miles	24

⁷ FHWA, Safety Analysis (2023), <https://highways.dot.gov/safety/local-rural/roadway-departure-safety-manual-local-rural-road-owners/3-safety-analysis>

Table 6 presents fatal and serious injury (FSI) crashes by demographic class. Consistent with overall crash patterns, there are more FSI crashes in Median Areas and Low Disadvantage Areas. Almost 24% of all FSI crashes occur in advantaged areas.

The FSI rate – the number of FSI crashes normalized by total crashes – varies across demographic classes. High Advantage Areas and Low Advantage Areas have higher FSI rates (1.9) compared to Low Disadvantage Areas (1.6) and Median Areas (1.5). These findings suggest that crashes are more likely to result in fatalities and serious injuries in advantaged areas compared to others.

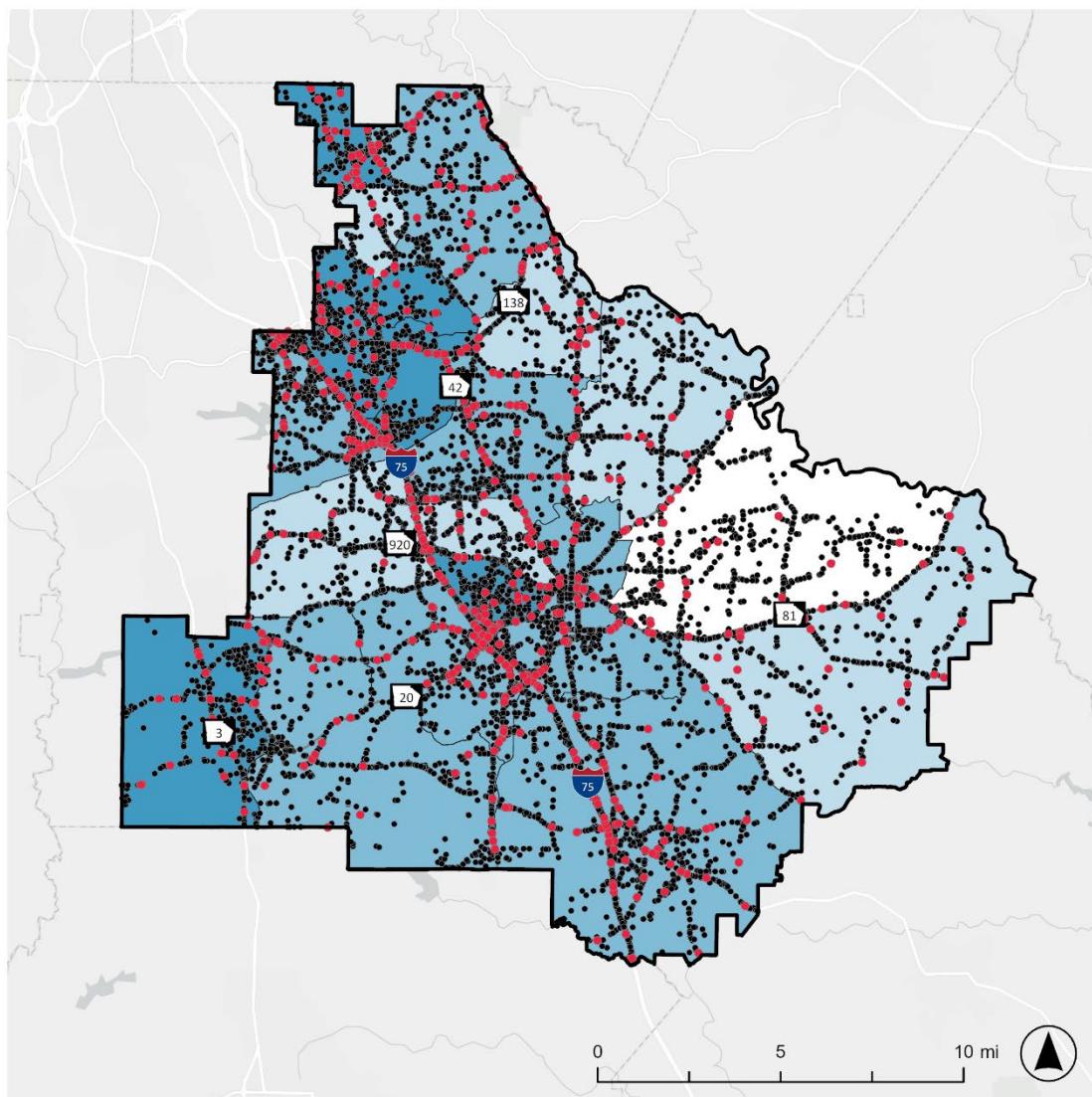

However, the number of FSI crashes per mile increases as the percentage of the population that is vulnerable increases. Low Disadvantage Areas experience the most FSI crashes per centerline mile. This finding may indicate that there is a greater number of FSI crashes, as well as more crashes overall, in Disadvantaged Areas, but there may be more roadways with high-risk characteristics in Advantaged Areas.

Table 6: FSI Crashes by Demographic Classes

	NUMBER OF FSI CRASHES (%)	FSI RATE	NUMBER OF FSI CRASHES PER MILE
HIGH ADVANTAGE AREAS	25 (3.3%)	1.9	0.1
LOW ADVANTAGE AREAS	152 (20.2%)	1.9	0.3
MEDIAN AREAS	400 (53.3%)	1.5	0.4
LOW DISADVANTAGE AREAS	174 (23.2%)	1.6	0.5
HIGH DISADVANTAGE AREAS	-	-	-
HENRY COUNTY	751	1.6	0.4

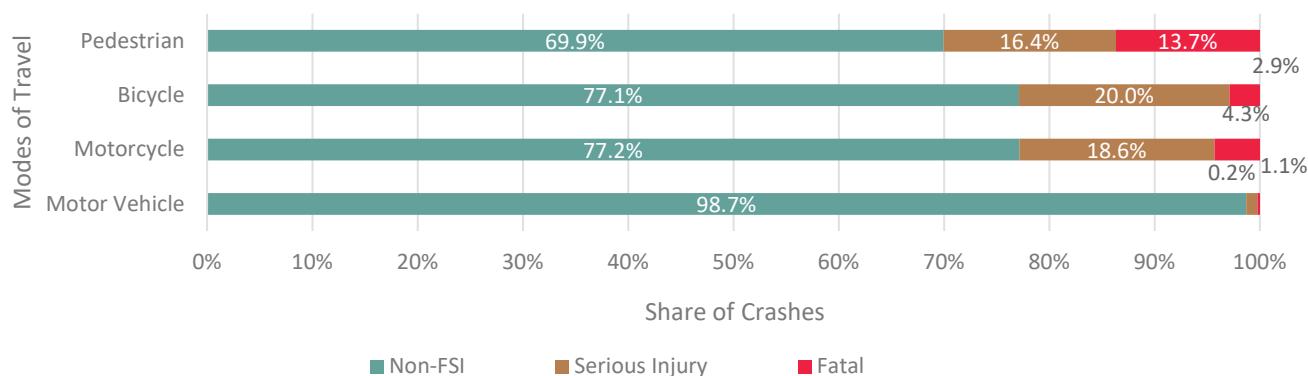
Figure 4 shows the spatial distribution of crashes by severity in Henry County. Non-FSI crashes are far more common and are dispersed throughout the entirety of the county. In contrast, FSI crashes occur less frequently and are primarily along interstates and state highways, likely due to higher vehicle speeds. Although crashes are present across the entire county, there are clusters of crashes in Median and Low Disadvantage Areas in the central, southwestern, and northwestern portions of Henry County. This pattern is especially pronounced for FSI crashes, indicating that crashes are more frequent in Disadvantaged Areas, echoing the finding that more crashes occur in these areas.

Figure 4: Crashes by Severity in Henry County

Crash Severity

- FSI
- Non FSI
- Interstates
- State Highways

Demographic Classes


- High Advantage Areas
- Low Advantage Areas
- Median Areas
- Low Disadvantage Areas
- High Disadvantage Areas

4.2 Crashes by Mode

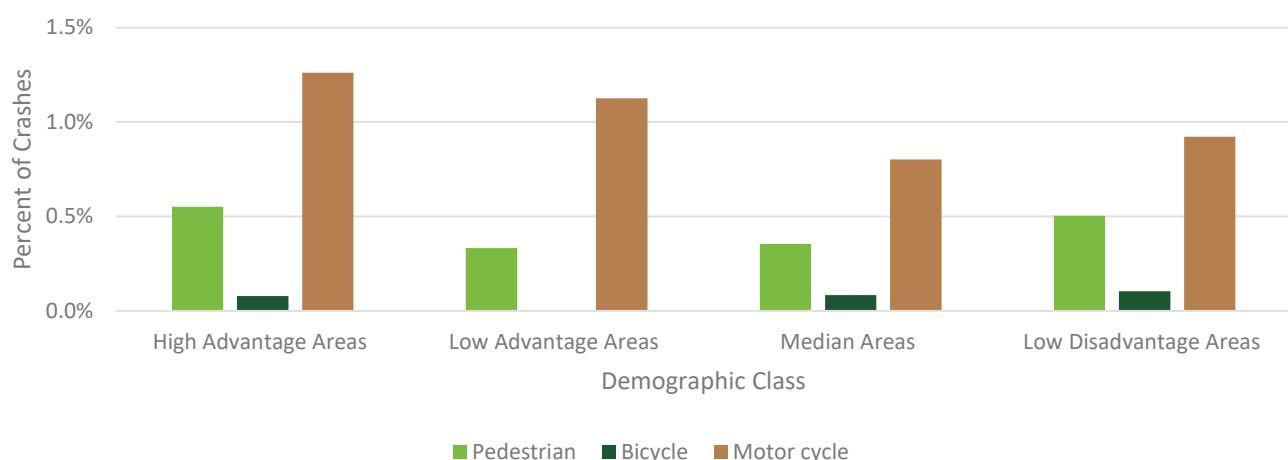

Figure 5 illustrates the severity of crashes in Henry County for each mode of transportation. Notably, 13.7% of pedestrian crashes are fatal, while only 0.2% of motor vehicle-only crashes are fatal. Pedestrian crashes are most likely to be FSI crashes (30%), while motor vehicle-only crashes are the least likely (1.3%). Bicycle and motorcycle crashes also have a greater occurrence of FSI crashes than motor vehicle-only crashes. Most motor vehicle crashes (98.7%) result in no injury. This shows that crashes with roadway users outside of a motor vehicle are more likely to be fatal or result in serious injuries, especially for pedestrians. More information about crash trends among various modes of transportation in Henry County is available in the Descriptive Crash Analysis Report.

Figure 5: Crash Percentage by Severity by Mode of Travel

Figure 6 shows the crashes by these vulnerable modes of travel across demographic classes. The likelihood of motorcycle crashes is higher in Advantaged Areas than Median and Disadvantaged Areas. Notably, no bicycle crashes have been reported in Low Advantage Areas. This is further supported by **Table 8**, which shows that although the number of crashes is higher in Median and Low Disadvantage Census tracts for all modes, the percentages of crashes by mode are fairly similar across all demographic classes. The finding shows that the proportion of crashes by mode across demographic classes follows a similar trend, although motor vehicle-only crashes are most likely.

Figure 6: Crashes by Mode of Travel Across Demographic Classes

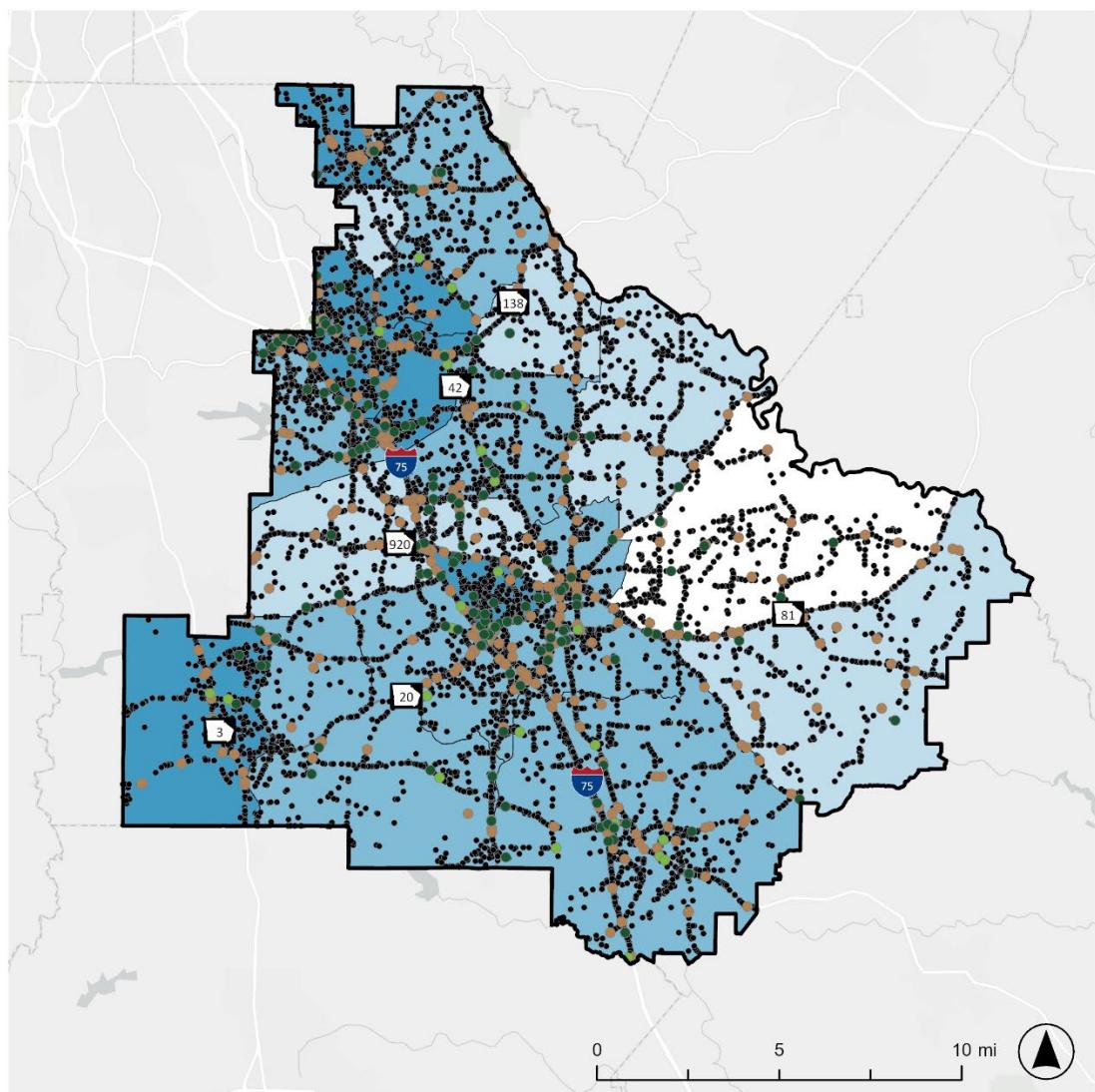


Table 7: Crashes by Mode of Travel Across Demographic Classes

	PEDESTRIAN	BICYCLE	MOTORCYCLE	MOTOR VEHICLE	ALL MODES
HIGH ADVANTAGE AREAS	7 (0.6%)	1 (0.1%)	16 (1.3%)	1,245 (98.1%)	1,269
LOW ADVANTAGE AREAS	26 (0.3%)	0 (0%)	88 (1.1%)	7,705 (98.5%)	7,819
MEDIAN AREAS	97 (0.4%)	23 (0.1%)	219 (0.8%)	26,978 (98.8%)	27,317
LOW DISADVANTAGE AREAS	53 (0.5%)	11 (0.1%)	97 (0.9%)	10,360 (98.5%)	10,521
HENRY COUNTY	183 (0.4%)	35 (0.1%)	420 (0.9%)	46,288 (98.6%)	46,926

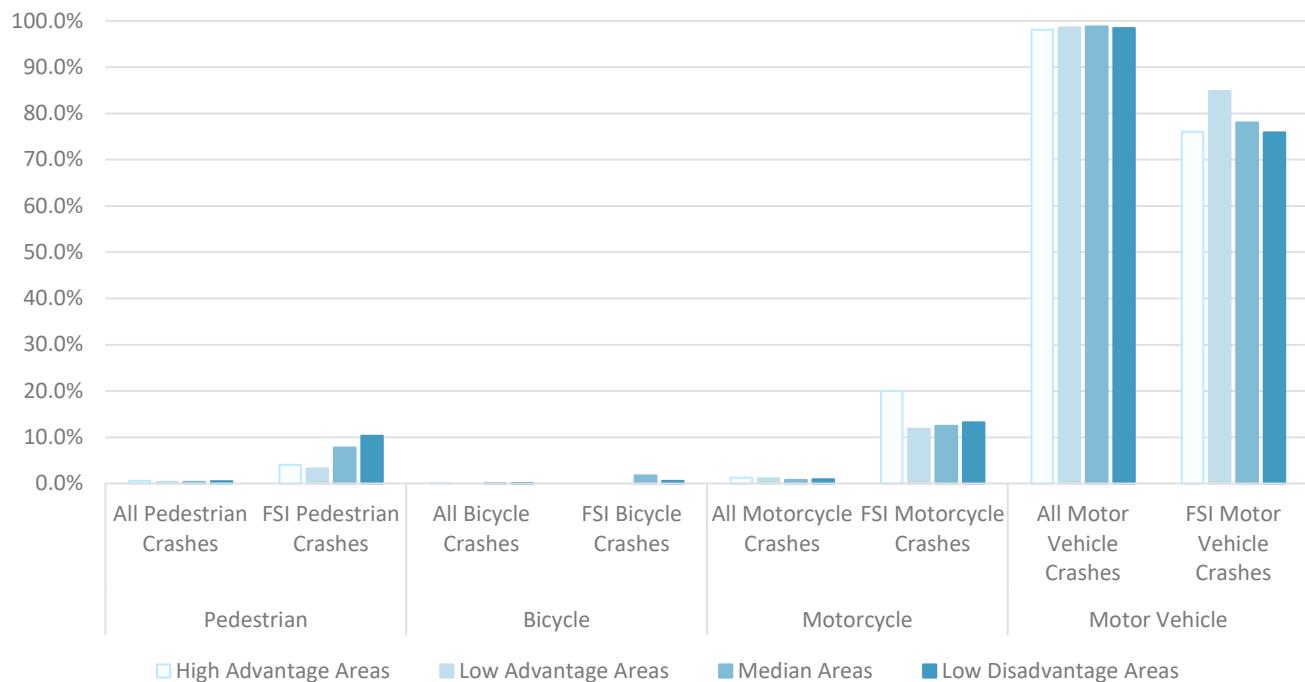
Figure 7 shows the spatial distribution of crashes by mode of travel across Henry County. Motor vehicle and motorcycle crashes are distributed throughout the county with the majority on state highways and Interstates, whereas bicycle and pedestrian crashes are concentrated in and around urban areas.

Figure 7: Crashes by Mode of Travel Across Demographic Classes

Crash Mode

- Pedestrian
- Bicycle
- Motorcycle
- Motor Vehicle (excluding motorcycles)

— Interstates


— State Highways

Demographic Classes

- White: High Advantage Areas
- Light Blue: Low Advantage Areas
- Medium Blue: Median Areas
- Dark Blue: Low Disadvantage Areas
- Dark Blue: High Disadvantage Areas

Figure 8 compares the percentage of crashes by mode and severity over demographic classes. Fatal and serious injury pedestrian and bicycle crashes are more likely in Median and Low Disadvantage Areas than in High Advantage and Low Advantage Areas. The percentage of motorcycle FSI crashes is greatest in High Advantage Areas. Motor vehicle FSI crashes are consistently lower than the occurrence of motor vehicle crashes of any severity across all demographic classes.

Figure 8: FSI Crashes by Mode of Travel Across Demographic Classes

4.3 Crash Findings Among Cities

Table 7 compares crash patterns across Henry County cities. Stockbridge, which is primarily within Low Disadvantage Areas, has the highest number of crashes per mile. Hampton, primarily located in a Low Disadvantage Census tract, has the lowest centerline mileage among all cities, resulting in the lowest total number of crashes. Notably, Hampton has a significantly higher FSI rate (3.3) than any other city, likely due to the presence of State Routes 3 and 20. Locust Grove, which lies entirely in a Median Area Census tract, yields a significantly higher number of crashes, likely due to the presence of Interstate 75. Locust Grove also has high rates of crashes and the highest number of FSI crashes per mile among all cities in Henry County.

Unincorporated Henry County has a high overall number of crashes and FSI crashes. Still, when normalized by road network mileage, the rate of crashes per mile and FSI crashes per mile is lower compared to other cities in the county, except for Hampton. However, unincorporated Henry County has the second-highest FSI crash rate, likely due to several state highways. This aligns with the previous findings that advantaged areas have higher FSI rates compared to Median and Low Disadvantage Areas

Table 8: Crash Characteristics in the Cities of Henry County

	NUMBER OF CRASHES	CENTERLINE MILEAGE	NUMBER OF CRASHES PER MILE	NUMBER OF FSI CRASHES	FSI RATE	NUMBER OF FSI CRASHES PER MILE
STOCKBRIDGE	5,858	145.3	40	61	1.0	0.4
HAMPTON	810	68.8	12	27	3.3	0.4
MCDONOUGH	5,760	156.7	37	60	1.0	0.4
LOCUST GROVE	2,935	76.9	38	37	1.3	0.5
UNINCORPORATED HENRY COUNTY	31,564	1,511.2	21	566	1.8	0.4
HENRY COUNTY	46,927	1,959	24	751	1.6	0.4

Table 9 shows the distribution of FSI crashes by mode across the cities in Henry County. Stockbridge experiences the highest number of FSI crashes among motor vehicle-only crashes. McDonough has the most motorcycle and pedestrian FSI crashes. Locust Grove is the only city with bicycle-related FSI crashes, and both bicycle and pedestrian FSI crashes are absent in Hampton.

Table 9: FSI Crashes by Mode of Travel Across the Cities of Henry County

	PEDESTRIAN (%)	BICYCLE (%)	MOTORCYCLE (%)	MOTOR VEHICLE (%)
STOCKBRIDGE	6 (10.9%)	0 (0%)	11 (11.5%)	44 (7.4%)
HAMPTON	0 (0%)	0 (0%)	5 (5.2%)	22 (3.7%)
MCDONOUGH	8 (14.5%)	0 (0%)	13 (13.5%)	39 (6.6%)
LOCUST GROVE	3 (5.5%)	2 (25%)	5 (5.2%)	27 (4.6%)
UNINCORPORATED HENRY COUNTY	38 (69.1%)	6 (75%)	62 (64.6%)	460 (77.7%)
HENRY COUNTY	55	8	96	592

5 HIGH INJURY NETWORK AND HIGH RISK NETWORK

The HIN is a geospatial tool that identifies roadway segments that have the greatest density of severe crashes over the past five years. The HRN is a geospatial tool that indicates roadways with characteristics present at the sites of severe crashes over the past five years. **Table 10** illustrates the variation of HIN and HRN mileage across demographic classes in Henry County. The analysis shows that Median and Low Disadvantage Areas have higher total HIN and HRN mileage compared to High and Low Advantage Areas. To account for the larger roadway network in Median Areas, the HIN and HRN mileage values are normalized by the total centerline mileage within each demographic class. The normalized results reveal greater shares of the roadway network being a part of the HIN and HRN in Census tracts with greater proportions of vulnerable populations. In other words, the mileage of the HIN and HRN is correlated with percentages of vulnerable populations. Thus, Low Disadvantage Areas have the highest proportion of HIN and HRN mileage relative to their total centerline mileage.

Table 10: HIN and HRN Mileage Across Demographic Classes in Henry County

	HIN MILEAGE	PERCENTAGE OF TOTAL CENTERLINE MILEAGE	HRN MILEAGE	PERCENTAGE OF TOTAL CENTERLINE MILEAGE
HIGH ADVANTAGE AREAS	1.1 miles	0.6%	6.0 miles	3.4%
LOW ADVANTAGE AREAS	6.9 miles	1.5%	25.8 miles	5.6%
MEDIAN AREAS	23.7 miles	2.4%	79.6 miles	8.2%
LOW DISADVANTAGE AREAS	12.6 miles	3.7%	46.3 miles	13.4%

More information about the HIN and HRN is available in the **High Injury Network Report** and **High Risk Network Report**, respectively.

6 PLANNED AND PROGRAMMED PROJECTS

6.1 TIP and SPLOST Projects

Table 11 shows the distribution of planned and programmed projects across various demographic classes. In Median Area Census tracts, the number of intersection projects and the total roadway project mileage are higher than in other demographic classes. To ensure a fair comparison across different area sizes, these values have been normalized based on the number of Census tracts within each class. The normalized results indicate that High Advantage Areas receive the highest number of projects, whereas Low Disadvantaged Areas receive the least. The roadway project mileage also is proportional to the percentage of centerline mileage in the demographic classes, the demographic classes with high percentage of centerline mileage show high roadway project mileage and vice versa.

Table 11: Planned and Programmed Projects Across Demographic Classes

	NUMBER OF INTERSECTION PROJECTS	NUMBER OF INTERSECTION PROJECTS PER CENSUS TRACT	ROADWAY PROJECT MILEAGE	ROADWAY PROJECT MILEAGE PER CENSUS TRACT	CENTERLINE MILEAGE (%)
HIGH ADVANTAGE AREA	5	5.0	7.4	7.4	175.0 (8.9%)
LOW ADVANTAGE AREA	10	1.7	16.9	2.8	462.3 (23.6%)
MEDIAN AREA	26	2.4	53.5	4.9	975.9 (49.8%)
LOW DISADVANTAGE AREA	3	0.4	15.9	2.3	345.8 (17.7%)

6.2 CTP Projects

CTP projects are categorized by implementation timeline and project type. For this analysis, projects from all timelines have been considered together, and classified by project category.

Table 12 presents the distribution of intersection projects across various demographic classes, categorized by safety and capacity improvements. The analysis indicates that Median Areas have the highest number of intersection projects. Even after normalizing by the number of Census tracts within each demographic class, Median Areas continue to exhibit the highest number of intersection projects per Census tract.

Table 12: Intersection Projects Across Demographic Classes in CTP

	NUMBER OF INTERSECTION SAFETY PROJECTS	NUMBER OF INTERSECTION SAFETY PROJECTS PER CENSUS TRACT	NUMBER OF INTERSECTION CAPACITY PROJECTS	NUMBER OF INTERSECTION CAPACITY PROJECTS PER CENSUS TRACT
HIGH ADVANTAGE AREAS	1	1	0	0
LOW ADVANTAGE AREAS	4	0.7	1	0.2
MEDIAN AREAS	20	1.8	19	1.7
LOW DISADVANTAGE AREAS	9	1.3	6	0.9

Table 13 shows the total mileage of transportation projects across different demographic classes. The results show that Median Areas account for the highest total mileage of projects across all categories. However, after normalizing by the number of Census tracts in each class, which is also shown in **Table 13**, High Advantage Areas have the highest project mileage per Census tract across all but one project type. Conversely, Low Disadvantage Areas have the lowest number of projects per Census tract across all project types, except for sidewalk projects.

Table 13: Project Mileage by Project Type Across Demographic Classes in CTP

	ROADWAY CAPACITY	ROADWAY UPGRADE	NEW ROADWAY	TRAILS	SIDEWALK	ROADWAY WIDENING
TOTAL MILEAGE	High Advantage Areas	3.8	0	3.3	24.5	8.8
	Low Advantage Areas	5.6	10.6	4.1	40.2	29.7
	Median Areas	21.2	21.7	15.1	112.8	84.3
	Low Disadvantage Areas	6.4	3.0	1.5	29.2	43.6
% CENTERLINE	High Advantage Areas	3.8	0	3.3	24.5	5.2
	Low Advantage Areas	0.9	1.8	0.7	6.7	4.9
	Median Areas	1.9	2.0	1.4	10.3	7.7
	Low Disadvantage Areas	0.9	0.4	0.2	4.2	1.5

7 SUMMARY

The demographic analysis of crash patterns in Henry County reveals several key findings regarding transportation safety across areas of different demographic classes. Analysis of Census tracts shows that while Henry County has no High Disadvantage Areas, it does contain several Low Disadvantage Area Census tracts that overlap with each city to some extent. Stockbridge and Hampton, which primarily lie within Low Disadvantage Areas, show higher crash rates per mile and FSI rates than other parts of the county. The analysis indicates that 28% of Census tracts in Henry County are classified as Low Disadvantaged. These tracts account for 23.2% of all FSI crashes and experience the highest rate of FSI crashes per mile. These patterns indicate that FSI crashes are more likely in disadvantaged areas and that residents of these Census tracts face greater risks on the roadway.

This analysis demonstrates that pedestrians face the greatest vulnerability to severe crashes, with an FSI rate of 30% compared to just 1.3% for motor vehicle-only crashes. Furthermore, over 32.7% of pedestrian FSI crashes occur in Low Disadvantage Areas, highlighting safety concerns for pedestrians in vulnerable communities.

The results of the HIN and HRN analysis indicate that the proportion of vulnerable populations is correlated with the proportion of the roadway designated as HIN and HRN. Low Disadvantage Areas have the highest proportion of HIN and HRN mileage relative to their total centerline mileage. This trend aligns with the findings of the crash analysis, which indicates that the number of crashes is also greatest in census tracts with the highest proportions of vulnerable populations. These findings suggest that the occurrence and risk of crashes are greatest in low-income and minority communities.

The analysis of infrastructure distribution shows that High Advantage Areas receive disproportionately more infrastructure investments per Census tract. In contrast, Low Disadvantage Areas tend to have the lowest normalized rates of planned and programmed projects. This identified disparity in infrastructure distribution suggests considerations for future transportation planning efforts to improve safety for all roadway users in Henry County while also reducing the disparities among the risk of crashes, the severity of crashes, and the investments of infrastructure in those communities.

PLAN AND POLICY REVIEW

HENRY COUNTY TRANSPORTATION SAFETY ACTION PLAN

Prepared by:

Modern Mobility Partners
730 Peachtree St., NE, Ste. 650
Atlanta, GA 30308
www.modernmobilitypartners.com

Prepared for:

Henry County
140 Henry Parkway
McDonough, GA, 30253
<https://www.henrycountyga.gov/>

Disclaimer:

This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential and exempt from disclosure under applicable law. Any dissemination, distribution or copying of this document is strictly prohibited.

Table of Contents

1	Executive Summary	1
2	Introduction	2
3	Plan Review	3
3.1	Safety Analysis	5
3.1.1	Pedestrian and Bicycle Safety.....	5
3.1.2	Freight Safety.....	8
3.1.3	Roadway Safety	9
3.2	Public Input.....	11
3.3	Planned Projects and Countermeasures	13
3.3.1	Pedestrian and Bicycle Measures.....	13
3.3.2	Freight Improvements.....	15
3.3.3	Roadway Projects	15
4	Policy Review.....	17
4.1	Pedestrian Safety Policies	19
4.1.1	Sidewalk Construction Warrants	19
4.1.2	Pedestrian Infrastructure Design.....	20
4.2	Bicycle Safety Policies	25
4.2.1	Bicycle Infrastructure Warrants and Design.....	25
4.2.2	E-Bike Use	27
4.3	Freight Safety Policies	28
4.3.1	Federal Requirements and Guidance for Freight Safety	28
4.3.2	State and Regional Requirements and Guidance for Freight Safety	28
4.3.3	Local Requirements and Standards for Freight Safety	29
4.3.4	Local Plan Considerations for Freight Safety	29
4.3.5	Peer Community Approaches to Freight Safety	29
4.4	Transit Safety Policies	30
4.4.1	Federal Requirements and Guidance for Transit Safety	30
4.4.2	State and Regional Requirements and Guidance for Transit Safety	30
4.4.3	Local Requirements for Transit Safety.....	30
4.4.4	Local Plan Considerations for Transit Safety.....	30
4.4.5	Peer Community Approaches to Transit Safety.....	31
4.5	School Zone Safety.....	31

4.5.1	Federal Requirements and Guidance for School Zone Safety	31
4.5.2	State and Regional Requirements and Guidance for School Zone Safety	31
4.5.3	Local Requirements and Standards for School Zone Safety	31
4.5.4	Local Plan Considerations for School Zone Safety.....	32
4.5.5	Peer Community Approaches to School Zone Safety.....	32
4.6	Roadway Safety Policies.....	33
4.6.1	Traffic Signals.....	33
4.6.2	Speed Management	35
5	Summary and Next Steps.....	38

List of Acronyms

AASHTO	American Association of State Highway and Transportation Officials
ADA	Americans with Disabilities Act
ARC	Atlanta Regional Commission
AVL	Automatic Vehicle Location
C-V2X	Cellular Vehicle-to-everything
CAD	Computer-aided Dispatch
CAV	Connected and Autonomous Vehicle
CID	Metro South Community Improvement District
CTP	Henry County Transportation Plan
DRIs	Developments of Regional Impact
DSRC	Dedicated Short-range Communication
E-bikes	Electric Bicycles
FHWA	Federal Highway Administration
FRA	Federal Railroad Administration
GDOT	Georgia Department of Transportation
HAWK	High-intensity activated crosswalk
HCFD	Henry County Fire Department
ITS	Intelligent Transportation System
LCI	Livable Centers Initiative
MPH	Miles Per Hour
MUTCD	Manual on Uniform Traffic Control Devices
NACTO	National Association of City Transportation Officials
NFSP	National Freight Strategic Plan
NHTSA	National Highway Traffic Safety Administration
NRSS	National Roadway Safety Strategy
OBUs	On-board Units
PDO	Planned Development Urban District
PROWAG	Public Right-of-Way Accessibility Guidelines
RSUs	Roadside Units
SMART	Strengthening Mobility and Revolutionizing Transportation
SPLOST	Special Purpose Local Option Sales Tax
SRTS	Safe Routes to School
SS4A	Safe Streets and Roads for All
SSA	Safe System Approach
TIP	Transportation Improvement Program
TIS	Transportation Impact Study
T-SPLOST	Transportation Special Purpose Local Option Sales Tax
TSAP	Transportation Safety Action Plan
ULDC	Unified Land Development Code
USDOT	U.S. Department of Transportation
VMT	Vehicle Miles Traveled
VRU	Vulnerable Road User

1 EXECUTIVE SUMMARY

In 2024, Henry County received a Safe Streets and Roads for All (SS4A) grant to develop a Transportation Safety Action Plan (TSAP). This plan will identify and address transportation-related safety concerns in the community and establish action steps toward eliminating or significantly reducing traffic crashes and fatalities. As part of the development of the TSAP, plans and policies adopted by Henry County and the cities of Hampton, Locust Grove, McDonough, and Stockbridge were reviewed for how they address roadway safety. This executive summary highlights key findings from these plans.

Henry County's vulnerable roadway users (VRU), meaning roadway users outside of a motor vehicle like people walking and biking, are exposed to a high crash risk due to poor conditions and insufficient sidewalks and bike lanes connectivity. Both policies and specific roadway improvements can facilitate safer pedestrian and bicycle trips, particularly along high automobile traffic corridors and near school zones. Public input strongly supports expanded sidewalks, trails, and pedestrian-friendly developments.

Increasing truck traffic has led to congestion and safety concerns, prompting the county to explore dedicated truck lanes, improved truck parking regulations, and safer at-grade railroad crossings. Disconnected truck routes pose safety concerns for truck drivers and users sharing roadways with freight vehicles.

Transit services are limited to demand-response and commuter routes, but public feedback indicates strong support for transit expansion.

Henry County is addressing automobile safety challenges by regulating the use of roadways, upgrading transportation technologies, and improving speed management. Deploying Intelligent Transportation System (ITS) improvements and investing in connected and autonomous vehicle (CAV) technologies reduce emergency response times and make emergency response safer through intersections. Cities such as Stockbridge and McDonough assign lower speed limits than Georgia regulations on specific roadways near school zones and entering downtown centers. Physical measures, such as traffic calming and improved pedestrian crossings, could also enhance safety for all roadway users.

Henry County and its cities have proposed roadway projects and made policy recommendations to improve transportation safety and connectivity. However, continued investment in infrastructure improvements, policy updates, and public engagement is essential to creating a safer transportation network for all users.

2 INTRODUCTION

This report reviews adopted plans and policies applicable to Henry County and its cities' advancement of roadway safety. These documents were examined to understand how they facilitate the provision of safe roadways and the safe use of roadways in alignment with a Safe System Approach (SSA) and determine gaps in these jurisdictions' existing policy framework. This document will serve as a review of previous planning efforts and a baseline for developing new policies to be recommended in the Henry County TSAP.

3 PLAN REVIEW

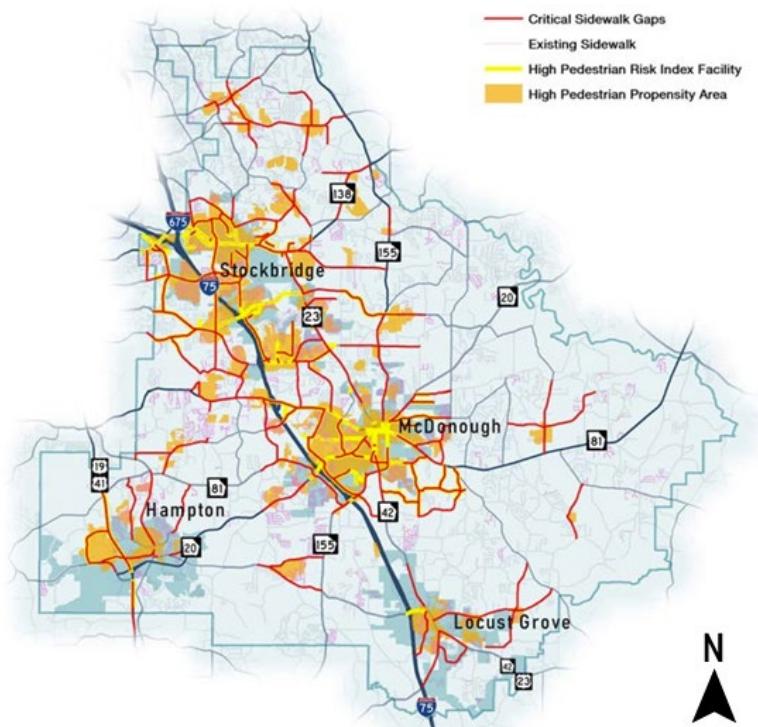
To understand the previous planning efforts toward improving roadway safety in Henry County, 16 state, regional, county, and city plans were reviewed. These are listed in **Table 3-1**. The Georgia Department of Transportation's (GDOT) *Vulnerable Roadway User (VRU) Safety Assessment*, GDOT's *Strategic Highway Safety Plan* (SHSP), and Atlanta Regional Commission's (ARC) *Regional Safety Strategy* include crash and equity analyses and provide detailed countermeasures to reduce crashes by type of safety issue. Other reviewed plans covered various transportation and planning topics, such as congestion, transit route optimization, land use, and economic development. The TSAP represents the first local plan dedicated to transportation safety. All plans listed in **Table 3-1** were reviewed for their considerations of roadway safety, including safety analyses, public input regarding safety, and plan recommendations.

Table 3-1 List of Reviewed Plans

JURISDICTION	PLAN	YEAR	TYPE	SCOPE	SOURCE
State					
Georgia	Vulnerable Roadway User Safety Assessment	2024	Report		Link to the document
Georgia	Georgia Strategic Highway Safety Plan	2022	Plan and Program		Link to the document
Georgia	Regional Connected Vehicle Program	2020	Plan and Program		Link to the document
Region					
ARC	ARC Regional Safety Strategy	2022	Report		Link to the document
ATL Authority	Regional Transit Plan	2020	Plan		Link to the document
ARC	Freight Mobility Plan	2016	Plan		Link to the document
ARC	ARC Bike-Pedestrian Plan	2015	Plan		Link to the document
County					
Henry County	Henry County Comprehensive Plan 2045	2023	Plan		Link to the document
Henry County	Connected and Autonomous Vehicle Planning Effort	2023	Plan and Program		Link to the document
Henry County	Henry County Transportation Plan 2022 Update (CTP)	2022	Plan		Link to the document
Henry County	Henry County Transit Master Plan	2022	Plan		Link to the document

JURISDICTION	PLAN	YEAR	TYPE	SCOPE	SOURCE
Henry County	Henry County Trails Plan and Trails Wayfinding Plan	2022	Plan		Link to the document
Henry County	Henry County/Cities Joint 2030 Comprehensive Plan	2008	Plan		Link to the document
City					
City of McDonough	McDonough Comprehensive Plan (2024-2028)	2023	Plan		City of McDonough
City of Stockbridge	City of Stockbridge 2024 Comprehensive Plan	2023	Plan		Link to the document
City of Stockbridge	City of Stockbridge Downtown Pedestrian & Bicycle Connectivity Study	2023	Study		Link to the document
City of Stockbridge	City of Stockbridge Livable Centers Initiative 10-Year Update	2012	Study		Link to the document
City of Locust Grove	IMR Study for Bill Gardner Interchange	2011	Study		Link to the document

Table Legend


- A transportation plan, study, or report that has safety as its main purpose.
- A transportation plan, study, or report.
- A comprehensive plan, study, or report not specifically focused on transportation.

3.1 Safety Analysis

3.1.1 Pedestrian and Bicycle Safety

The reviewed plans at both county and city levels highlight that a primary issue that makes pedestrian trips difficult and unsafe is insufficient pedestrian infrastructure and disconnected sidewalks. **Figure 3-1** below shows the critical sidewalk gaps in Henry County, which expand from downtown to residential areas in each city. Some of these gaps and existing sidewalks with a high pedestrian safety risk index are within high pedestrian propensity areas where people are likely to be walking.¹ In addition, pedestrian networks have few sidewalks that are compliant with the Americans with Disabilities Act (ADA).^{2,3} Although sidewalks have been added to new developments in Henry County's unincorporated areas in recent years, sidewalks are primarily within residential subdivisions⁴ and do not connect to the broader transportation network or non-residential destinations, such as commercial areas and recreational facilities.

Figure 3-1 Henry County Existing Sidewalks and Sidewalk Gaps¹

Residents in the City of Hampton, McDonough, and Stockbridge expressed an important need for improved walking connectivity.⁵ The City of Stockbridge's Livable Centers Initiative (LCI) set up goals of providing land use access through different traveling modes, including walking.⁶ The walking propensity analysis indicates that trail and sidewalk connections to school facilities are critical to providing parents and students with alternative and safe routes to school.¹ It is important to ensure pedestrian

¹ Henry County Transportation Plan. Pond. 2022. p. 196-200. [1560dc01-e718-4a31-8c7d-bd149984bfe9](https://storage.googleapis.com/its-stockbridge-ga/media/1560dc01-e718-4a31-8c7d-bd149984bfe9)

² City of Stockbridge, Downtown Pedestrian & Bicycle Connectivity Study (Sep 2023), 2.

https://storage.googleapis.com/its-stockbridge-ga/media/1699558085332-stockbridge-downtown-bike-ped_scoping-study.pdf

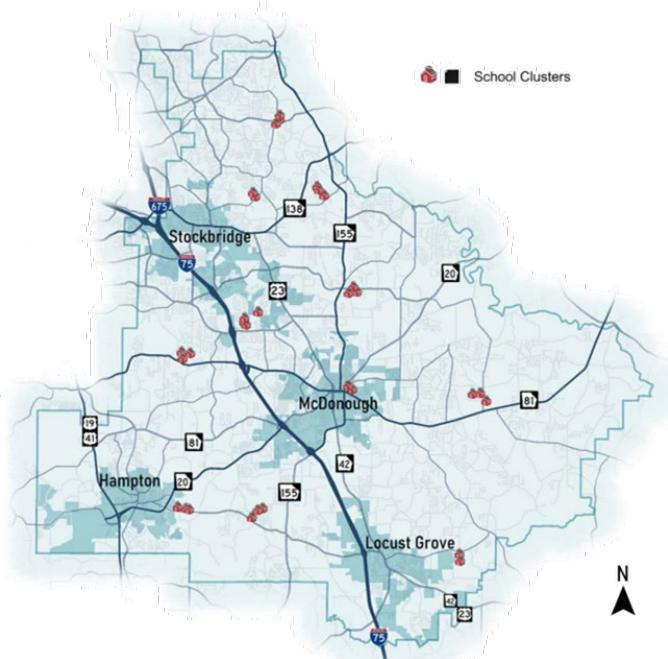
³ City of Stockbridge, Livable Centers Initiative 10-Year Update. July 2012. p. 30

⁴ Henry County, 2045 Comprehensive Plan (2023), 29.

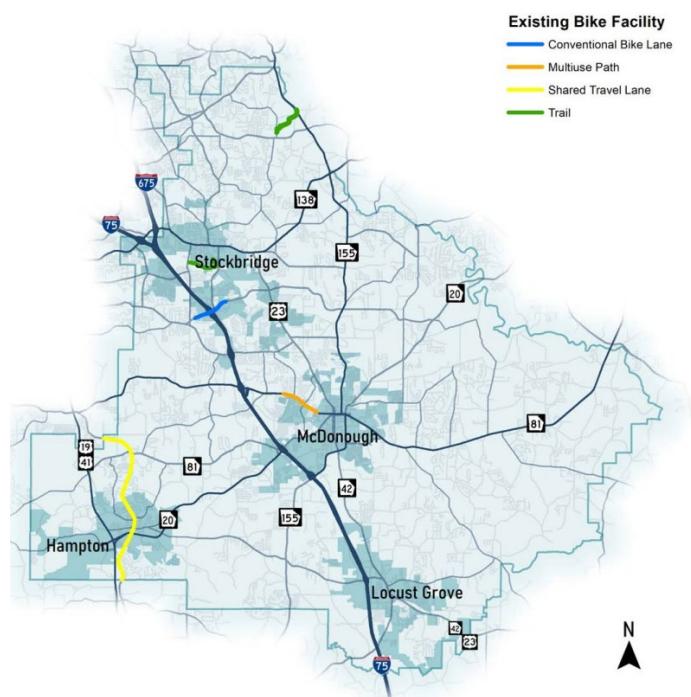
⁵ Henry County/Cities Joint 2030 Comprehensive Plan (2008), 5-11 – 5-21

⁶ City of Stockbridge, City of Stockbridge Livable Centers Initiative 10-Year Update. July 2012. p. 3.

accommodation and speed control near school clusters, which tend to be in rural areas and adjacent to state routes,⁷ as shown in **Figure 3-2.**⁸ Policies for pedestrian infrastructure warrants and speed management are covered in **Sections 4.1.1** and **4.6.3**.


There are very few miles of bike infrastructure in Henry County, as shown in **Figure 3-3**. Several city plans identify the need for a cohesive bicycle network and a multimodal transportation network.⁹

According to the *Henry County Transit Master Plan*,¹⁰ 82% of crashes involving bicyclists and pedestrians resulted in an injury or fatality. **Figure 3-4** demonstrates that the crash hot spots involving pedestrians are concentrated in urbanized areas, such as Downtown McDonough, commercial zones in the City of Stockbridge, and along major corridors such as State Route 138, State Route 20, and Eagles Landing Parkway.


The key factors contributing to a high bicycle and pedestrian safety risk index,^{11, 12} as shown in **Figure 3-5**, include:

- High-posted speeds greater than 35 MPH (miles per hour),
- State-owned or county-owned arterials with four or more lanes,
- Poor lighting,
- High volume roads with wide cross-sections,
- Specific zones such as proximity to schools and stores with alcohol licenses, and

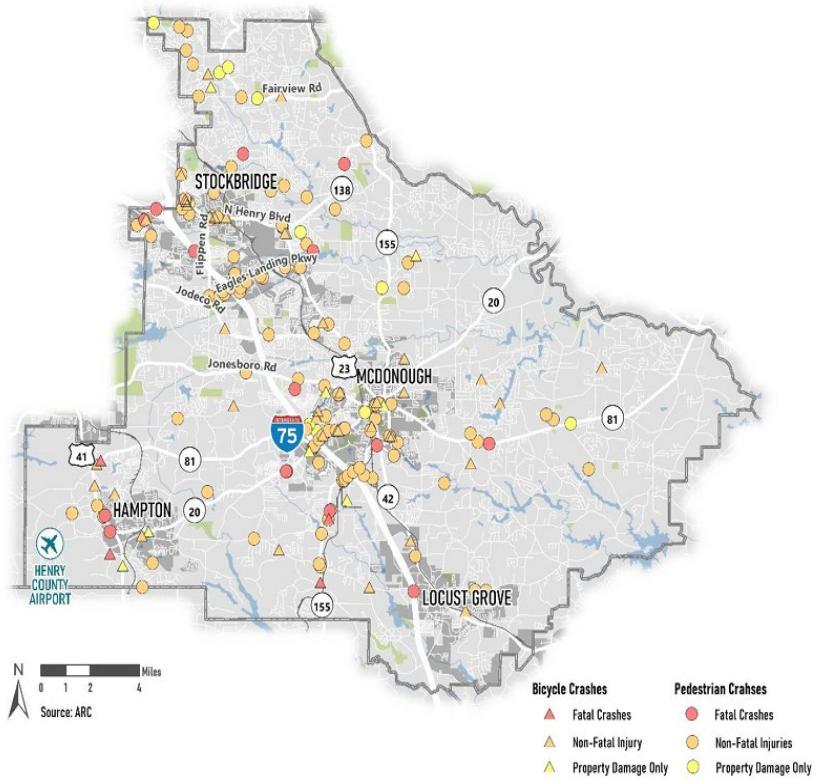
Figure 3-2 School Clusters in Henry County⁷

Figure 3-3 Existing Bicycle Facilities

⁷ Henry County, Trails Plan (July 2022), 23.

⁸ Georgia Department of Transportation, Design Policy Manual, 9-17.

⁹ Henry County Transportation Plan. Pond. 2022. 1560dc01-e718-4a31-8c7d-bd149984bfe9


¹⁰ Henry County, Transit Master Plan. VHB (Dec 2021), 5-3.

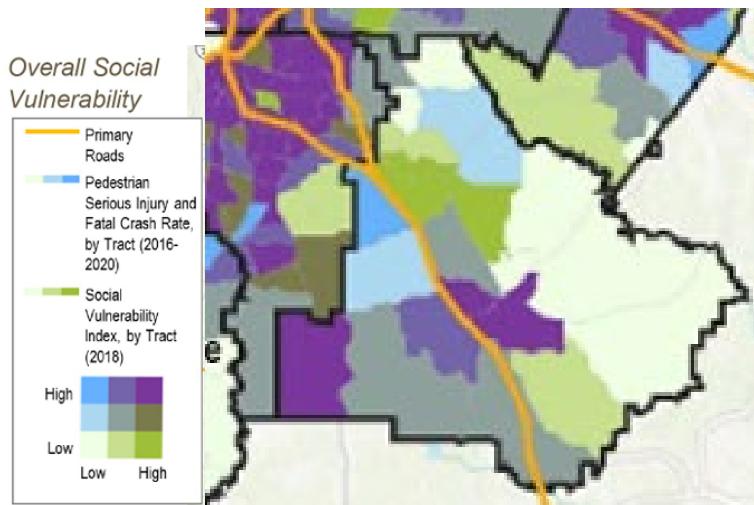
¹¹ Henry County Transportation Plan. Pond. 2022. P. 176. 1560dc01-e718-4a31-8c7d-bd149984bfe9

¹² Georgia Department of Transportation, Vulnerable Roadway User Safety Assessment (2024), 13-26

- Urbanized areas with high population and development densities.

Figure 3-4 Henry County Bicycle and Pedestrian Crashes (2016-2019)¹³

Figure 3-5 Roadway Examples of High Safety Risk Factors¹⁴



Across the Atlanta metropolitan area, the serious injury and fatal crash rate for pedestrians is not equally distributed and increases in areas with high social vulnerability scores, as shown in **Figure 3-6**. Neighborhoods with high percentages of racial minority populations and low-income individuals lack well-connected and maintained pedestrian infrastructure.

¹³ Henry County, Transit Master Plan (Dec 2021), 5-4

¹⁴ McDonough; GA-42/US 23 with 4 Through Lanes, Stockbridge; High-Volume Intersection with Wide Pedestrian Cross on Bill Gardner Parkway, Locust Grove; Poor roadway and pedestrian Lighting on Market PI Boulevard with high-density commercial developments nearby, Locust Grove (Left to Right), Google Streetview.

Figure 3-6 Severe Pedestrian Crash Rates (Per 100,000 Census tract population) and Social Vulnerability Index in Atlanta Region¹⁵

North Henry Boulevard (SR 138/42) and its connected feeder roads such as Burke Street and Lovejoy Street are specifically noted in plans due to a lack of ADA-compliant sidewalks. Projects to construct ADA ramps and sidewalks along North Henry Boulevard are proposed by the reports. Therefore, these adopted plans indicate that Henry County needs a more robust and interconnected pedestrian network to improve pedestrian safety.

At-grade railroad crossings, such as the one on Love Street in downtown Stockbridge, can prove hazardous for cyclists attempting to cross railroad tracks. The *Downtown Pedestrian and Bicycle Connectivity Plan* recommends an ADA-compliant concrete grade crossing and quad gate with a high-intensity activated crosswalk (HAWK) signal to allow pedestrian and bicycle connectivity.¹⁶

GDOT's *VRU Safety Assessment* highlights the negative impact that darkness leads to more pedestrian and cyclist fatalities, especially in fall and winter when daylight time becomes shorter.¹² Although VRU crash hotspots are clustered in urban areas, the percentage of VRU crashes resulting in fatalities in rural areas across the state has been higher than that in urban areas every year from 2013 to 2022.¹²

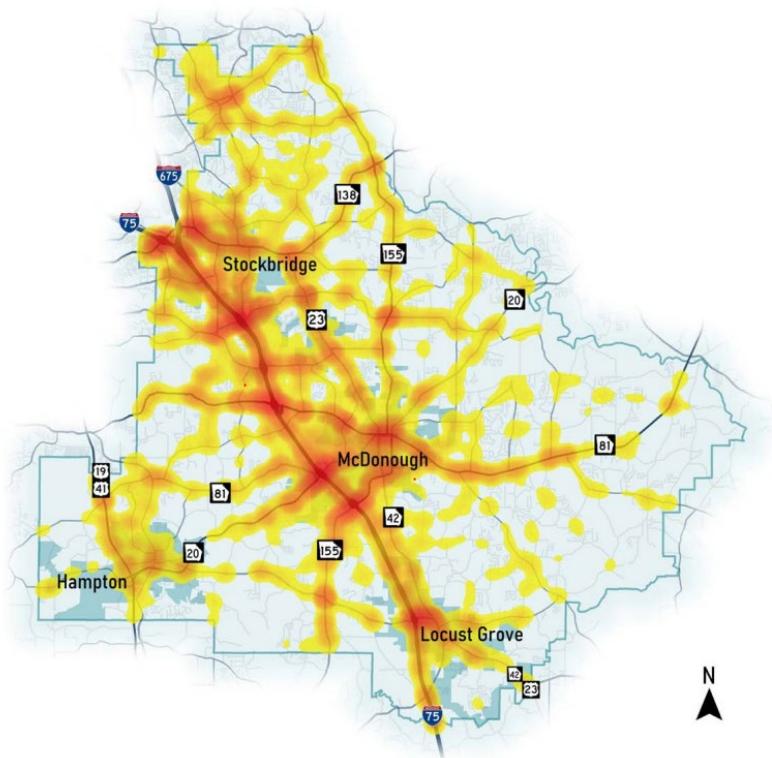
3.1.2 Freight Safety

Sometimes, truck drivers pull over to the side of the road to park as to not exceed their driving time limit as designated by federal law. Unauthorized truck parking increases crash risk by blocking sight distances for vehicles turning from nearby cross streets.¹⁰² The ARC *Freight Cluster Plan* found only 40 truck parking spaces in Henry County. *Atlanta Regional Truck Parking Assessment* found unauthorized truck parking in Henry County from a few times a month to as much as 1-2 times a week.¹⁷

¹⁵ Atlanta Regional Commission, *Regional Safety Strategy* (2022), 23.

¹⁶ City of Stockbridge, *Downtown Pedestrian & Bicycle Connectivity Study* (Sep 2023), 2.

https://storage.googleapis.com/its-stockbridge-ga/media/1699558085332-stockbridge-downtown-bike-ped_scoping-study.pdf


¹⁷ ARC, *Atlanta Regional Truck Parking Assessment Study* (Apr 2018).

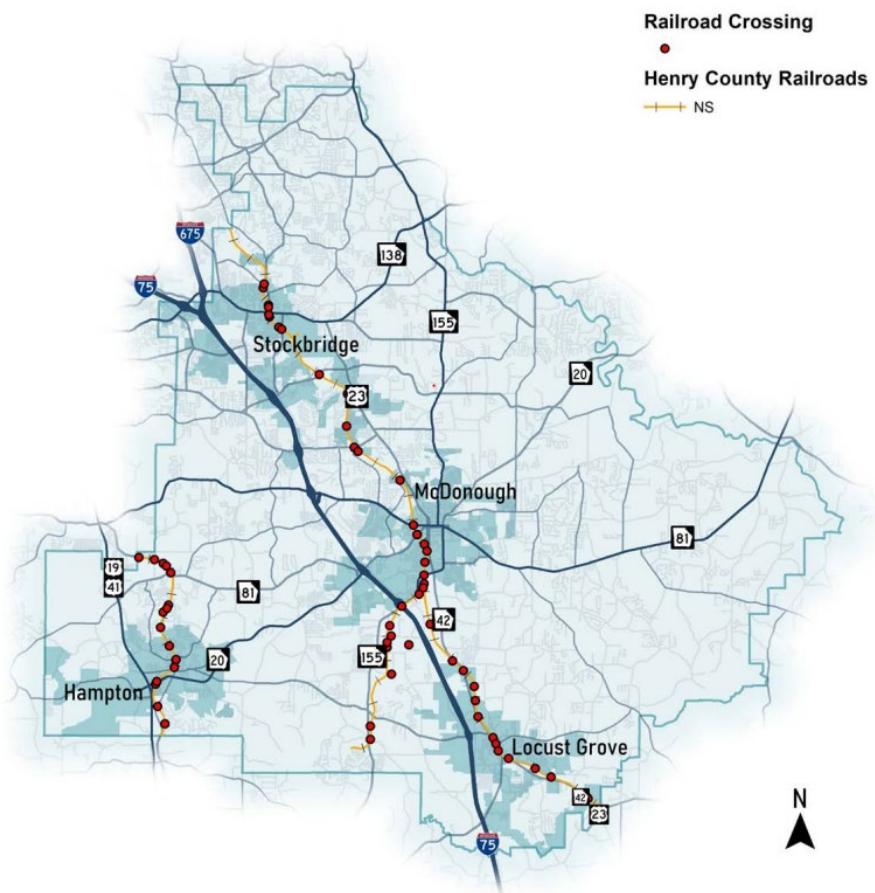
<final-report-atlanta-regional-truck-parking-assessment-study-apr-2018.pdf>

3.1.3 Roadway Safety

Historical crash data shows that most crashes occur on high-speed and high-volume corridors.¹⁸ In Henry County the crash hotspots are centered around the interchanges on I-75. The most common type of crashes are rear ends. **Figure 3-7** shows the vehicular crashes for Henry County between 2016 and 2020.

Figure 3-7 Henry County Vehicular Crashes 2016-2020¹⁹

Areas with higher freight volume have also contributed to an increase in crashes. In addition, freight trains can cause additional delays as they have the right-of-way over motor vehicles at crossings. **Figure 3-8** shows the railroad crossings in Henry County. There is some alignment with railroad crossings and vehicular crash locations. A recent study by the Federal Railroad Administration (FRA) found that the volume of rail and highway traffic over a crossing is significantly related to crash frequency.²⁰ Increasing the usage of safety devices such as flashing lights and gates can have a significant impact on reducing crash frequency.²⁰


¹⁸ 2045 Comprehensive Plan. <https://content.civicplus.com/api/assets/b0442793-aab0-4770-9209-fae7a84e2462>

¹⁹ Henry County Transportation Plan. Pond. 2022. 1560dc01-e718-4a31-8c7d-bd149984bfe9

²⁰ In-Depth Data Analysis of Grade Crossing Accidents Resulting in Injuries and Fatalities.

https://railroads.dot.gov/sites/fra.dot.gov/files/2020-05/Data%20Analysis%20of%20Grade%20Crossing%20Accidents_rev.pdf

Figure 3-8 Henry County Railroad Crossing Map²¹

²¹ Henry County Transportation Plan. Pond. 2022. 1560dc01-e718-4a31-8c7d-bd149984bfe9

3.2 Public Input

Public input helps identify safety risks not identified by traditional data sources and indicates community members' openness to different safety interventions. These insights promote the development of effective and community-oriented infrastructure solutions, and planners can better understand gaps between existing infrastructure and community desires. The most common types of public engagement across the adopted plans that were reviewed include surveys, open houses, and virtual meetings. **Table 3-2** shows a sample of comments related to safety from the public engagement efforts of the reviewed plans.

Table 3-2 Sample of Public Comments from Reviewed Plans

Plan	Format	Comments
Henry County Transportation Plan²²	Poster Board in the Public Meeting	<ul style="list-style-type: none"> • Flashing lights needed at Highway 155 and Alexander Lake Road. • Reduce speed limit on Fairview Road. • Streetlights needed on Highway 155 heading South after Panola Road; Ward Road and Ward Drive; Panola Road heading West toward Fairview Road. • Sidewalks needed throughout the county. • Locust Grove specific trails and greenspaces needed.
Henry County Transit Master Plan²³	Stakeholder Interviews; Public Survey	<ul style="list-style-type: none"> • There is a need to invest in transit-supportive infrastructure, such as shelters, benches, and first-mile/last-mile connectivity projects. • Feeling that transit vehicles are unclean or unsafe.
City of McDonough Comprehensive Plan²⁴	Public Survey	<ul style="list-style-type: none"> • Safe trails and places to walk with good sidewalks for neighborhoods and open spaces. • We need more lights. It is too dark to even try to walk outdoor.
City of Stockbridge LCI 10-Year Update²⁵	Image Preference Survey	<ul style="list-style-type: none"> • Top rated images showed a strong desire for improving transportation options for bicyclists and pedestrians. • The highest scoring image was a landscaped multi-use path; the second highest showed a wide, tree-lined sidewalks in a downtown environment.

Throughout the reviewed plans with public engagement sections, residents consistently expressed dissatisfaction with the current pedestrian and biking infrastructure. Although residents expressed a

²² Henry County Transportation Plan. Pond. 2022. [1560dc01-e718-4a31-8c7d-bd149984bfe9](https://www.henrycountyga.org/1560dc01-e718-4a31-8c7d-bd149984bfe9)

²³ Henry County Transit Master Plan (Jan 2022), 3-5

²⁴ City of McDonough Comprehensive Plan 2024-2028 (2023), 123

²⁵ City of Stockbridge, LCI 10-Year Update. 2012. p. 67.

strong interest in biking or walking to work, retail, and parks, their biggest concern is the safety and comfort of the trip.²⁶ In the City of McDonough, approximately 65% of residents rated pedestrian and bicycle safety as poor quality, and over 70% of community members consider these facilities highly important.²⁷ In the City of Locust Grove and the City of Stockbridge, residents specified that trails and sidewalks with green spaces are ideal for providing a safe space to walk for exercise and linking the proposed growth centers.²⁸

Residents also expressed a desire for regional connectivity, including connecting cities and land uses through integrated sidewalks, trail networks, and backup roadways that reduce congestion of main corridors.²⁹ In the City of Stockbridge, one of the residents' highest priorities is to require housing developments to include automobile and pedestrian connectivity to surrounding land uses.²⁸

Additionally, the community-level survey responses from the ARC *Bike-Pedestrian Plan* exposed other deficiencies in programming toward becoming a walk and bike-friendly community.²⁶ Survey respondents expressed a need for pedestrian master plans, safety action plans, Complete Street policies in local jurisdictions, and active pedestrian advocacy groups or Bicycle and Pedestrian Advisory Committees in communities.³⁰ Furthermore, communities do not provide enough safety education programs, such as Safe Routes to Schools.³⁰ Less than half of communities have local ordinances and bike or foot patrol officers that specifically address walking and biking safety.³⁰ Training programs for all roadway users about traffic laws is lacking across most communities.²⁶

Regarding vehicular roadway safety across the county, community members identified a great need for intersection improvements, such as installing more traffic signals instead of stop signs, limiting curb cuts, and constructing turn lanes.³¹ During the development of the *Henry County CTP*, respondents identified major roadways that need pedestrian flashing beacons, speed limits reduced, streetlights, and repaving.³²

None of the plans had public comments about freight safety issues, but stakeholders expressed concerns about transit services. In the *Henry County Transit Master Plan*, unclean and unsafe vehicles are the primary reason residents do not take transit services. In McDonough, half of the survey respondents still would like to have a bus system, but a few consider it not appropriate for community living and local roads.²⁷

²⁶ ARC, Bike Pedestrian Plan (2015), 1-50, 3-14 - 3-20.

²⁷ City of McDonough Comprehensive Plan 2024-2028 Five-Year Update (2023) 130-140

²⁸ City of Stockbridge, Livable Centers Initiative 10-Year Update. July 2012. p. 67.

²⁹ City of Stockbridge, 2024 Comprehensive Plan (2023), 38.

³⁰ Atlanta Regional Transportation, Regional Bike-Pedestrian Plan (2015), Part 3, 12-27.

³¹ Henry County, Henry County/Cities Joint 2030 Comprehensive Plan (May 2008), 3-4 – 3-7.

³² Henry County Transportation Plan. Pond. 2022. P. 318. [1560dc01-e718-4a31-8c7d-bd149984bfe9](https://www.henrycountyga.org/1560dc01-e718-4a31-8c7d-bd149984bfe9)

3.3 Planned Projects and Countermeasures

3.3.1 Pedestrian and Bicycle Measures

3.3.1.1 Types of Pedestrian and Bicycle Safety Countermeasures

The *Henry County CTP* has identified several countermeasures to reduce the occurrence of bicycle and pedestrian safety risks. These include creating support infrastructure for walking and biking, such as shade trees, street furniture, short-term bicycle parking, and wayfinding elements, and managing vehicle speeds, such as reducing the speed of urban arterial roadways to 35 MPH. The *Henry County Trails Plan* recommends safety and security elements such as installing safety railings, custom paving markings, and rectangular rapid flashing beacons to enhance safety throughout the trail.³³

The CTP recommends several pedestrian and bicycle safety measures at road crossings.³⁴ The plan calls for uniform safety standards for pedestrians and bicyclists through treatments listed in **Table 3-3**.

Table 3-3 Henry County CTP Safety Recommendations

RECOMMENDATION	SIDEWALK	CROSSINGS	TRAILS
Minimum sidewalk through zones of 5-6 feet	X		
The use of street trees and other verticals to provide a separation between traffic and pedestrians		X	
The use of an extended horizontal buffer, planted or otherwise, along streets with high speeds or traffic volumes		X	
Implementation of well-marked and frequent crosswalks		X	X
The use of curbs and curbed medians		X	X
Safety railings, visibility, site lighting, and traffic-calming measures	X	X	X
Removable bollards		X	
Traffic calming measures include speed humps leading up to the intersection and intersection art.		X	X
Rectangular rapid flashing beacons (RRFBs)		X	X
Raised crosswalks		X	

³³ Henry County Trails Plan, Pond. July 2022. [4c3ca7fe-879e-4b73-9869-62a30d079384](https://www.henrycountytn.gov/DocumentCenter/View/4c3ca7fe-879e-4b73-9869-62a30d079384)

³⁴ Henry County Transportation Plan. Pond. 2022. [1560dc01-e718-4a31-8c7d-bd149984bfe9](https://www.henrycountytn.gov/DocumentCenter/View/1560dc01-e718-4a31-8c7d-bd149984bfe9)

According to the *Downtown Pedestrian & Bicycle Connectivity Study*, the plan for downtown is to construct a shared bike/car lane, which can pose potential risks for both car and bike users on the road.³⁵ The study mentions plans to construct on-street bike lanes on both sides of the street and railroad involvement but does not include information on safety measures to reduce the risk of pedestrian and bicycle accidents.

3.3.1.2 Designations of Pedestrian and Bicycle Safety Countermeasures

The *Henry County CTP* recommends installing bicycle facilities along low-comfort roadways to provide safe and comfortable pathways for cyclists. Unprotected bicycle lanes can be implemented on mid-comfort roadways, and lower-cost treatments such as sharrows or signage should be sufficient on high-comfort roadways. The bicycle comfort system is based on a scoring system dependent on the volume and speed of cars operating on the road as shown in **Table 3-4**.

Table 3-4 Bicycle Comfort Index

Traffic Volumes		Speed		Rating
Thresholds	Score	Thresholds	Score	
<= 3,000 Average Daily Traffic (ADT)	1	<=25 MPH	1	Highest Level of Comfort
3,001 – 10,000 ADT	2	30-40 MPH	2	
>= 10,0001	3	>=45 MPH	3	Lowest Level of Comfort

³⁵ City of Stockbridge, *Downtown Pedestrian & Bicycle Connectivity Study*. Sep 2023. p. 2.
https://storage.googleapis.com/its-stockbridge-ga/media/1699558085332-stockbridge-downtown-bike-ped_scoping-study.pdf

3.3.2 Freight Improvements

The ARC *Freight Mobility Plan* recommends adding truck-only lanes to specific major interstates with higher-than-average freight traffic to separate car traffic from truck traffic.³⁶ Truck-only lanes have several benefits, including reducing conflicts between freight and automobile traffic. There are currently two projects in Henry County for truck-only lanes going northbound on I-75 and for a new interchange on I-75 at Bethlehem Road.³⁷ The plan also recommends additional elements including improving wayfinding signage and providing ITS enhancements such as truck signal preemption for better truck progression.³⁸

The Metro South Community Improvement District (CID) *Freight Cluster Plan*³⁹ recommends designating truck parking based on FHWA guidance, such as avoiding freight parking near residential uses and school and prioritizing locations adjacent to highways or near existing industrial developments.⁴⁰

3.3.3 Roadway Projects

The current planned projects in Henry County are from the Special Purpose Local Option Sales Tax (SPLOST), Transportation Special Purpose Local Option Sales Tax (T-SPLOST), and Transportation Improvement Program (TIP). **Table 3-4** and **Figure 3-9** show that types of projects include intersections and signals, new roadways, and widenings. Most roadway projects are along state routes, interstates, and U.S. highways. Some intersection projects align with widening projects, such as State Route 81 from Lemon Street to Bethany Road. However, no details were provided to indicate if these projects' purposes are to advance safety.

Table 3-5 Number of Projects by Resources and Types

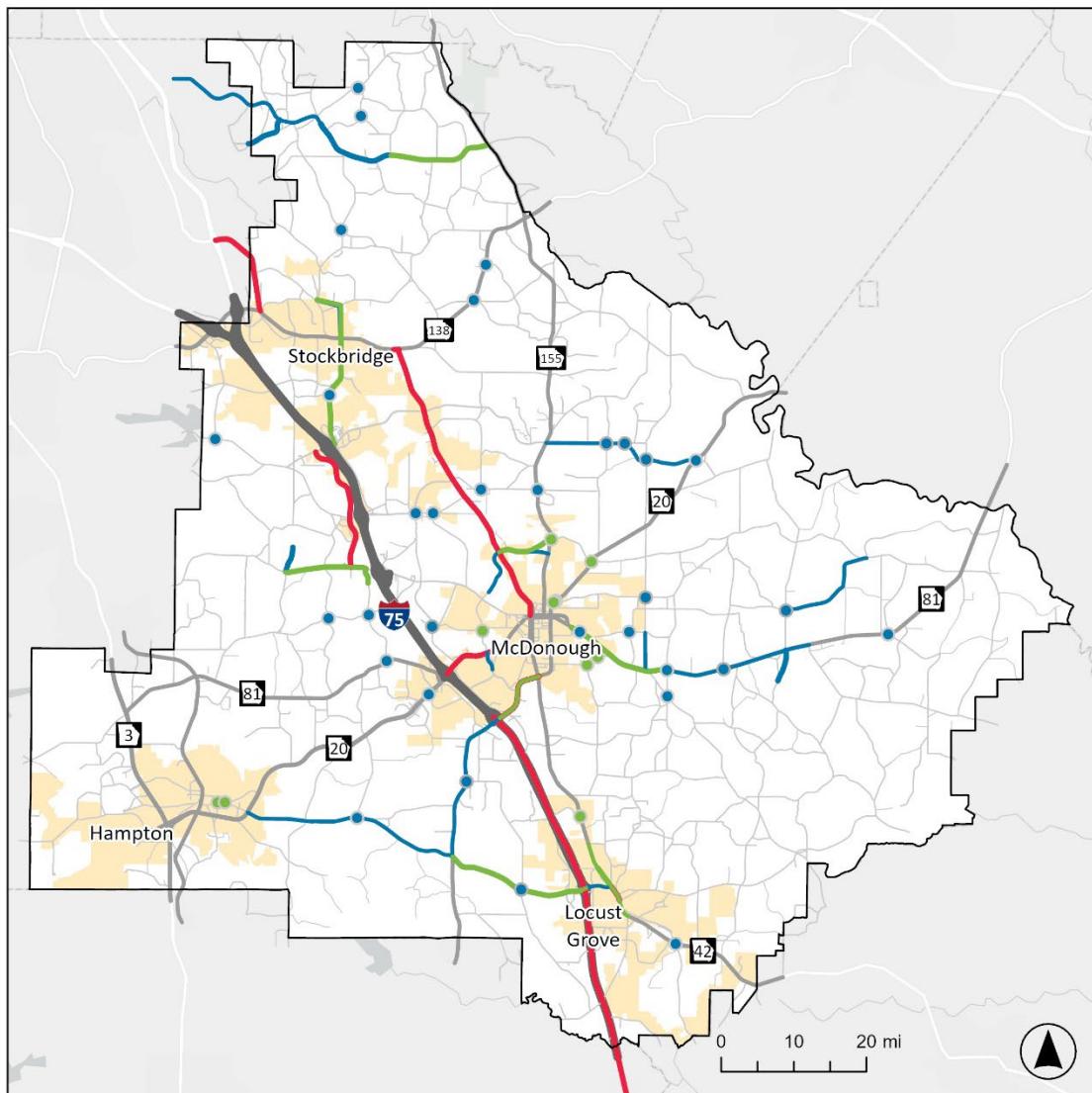
RESOURCE	INTERSECTION AND SIGNAL	NEW ROADWAY	WIDENING
TIP	0	2	5
SPLOST V	11	8	7
SPLOST IV	23	3	6
T-SPLOST	10	4	9

³⁶ ARC Freight Mobility Plan. p. 156. <https://content.civicplus.com/api/assets/73412e77-24bc-4ae5-94b7-c3ba26664fd2?cache=1800>³⁷ Henry County Transportation Projects.

<https://www.henrycountyga.gov/341/Transportation-Projects>

³⁷ Henry County Transportation Projects. <https://www.henrycountyga.gov/341/Transportation-Projects>

³⁸ Atlanta Regional Freight Mobility Plan Update. WSP & Cambridge Systematics. May 2016.


<https://content.civicplus.com/api/assets/73412e77-24bc-4ae5-94b7-c3ba26664fd2?cache=1800>, 156-163

³⁹ Metro South CID Freight Cluster Plan. <https://cdn.atlantaregional.org/wp-content/uploads/metro-south-cid-freight-cluster-plan.pdf>

⁴⁰ Truck Parking Development Handbook. p. 39-41.

https://ops.fhwa.dot.gov/freight/infrastructure/truck_parking/docs/Truck_Parking_Development_Handbook.pdf

Figure 3-9 Map of Henry County Programmed Projects

Projects

- SPLOST Intersection
- T-SPLOST Intersection
- SPLOST Roadway
- T-SPLOST Roadway
- TIP Roadway

Roadway Type

- Interstate
- State Highway
- Feeder Road

4 POLICY REVIEW

The policy review for the Henry County TSAP provides a review of federal, state, regional, county, and local policies and design guidelines related to safety for people walking, biking, taking transit, and driving. **Table 4-1** lists the policies and guidelines reviewed. Policies in peer jurisdictions that have similar geographic and demographic characteristics are provided as case studies. The policy review evaluates how Henry County's current policies align with the state and federal standards and best practices while also comparing it with peer jurisdictions to highlight areas where the county lags or exceeds in institutionalizing transportation safety.

Table 4-1 List of Reviewed Policies

Jurisdiction	Policy	Year	Type	URL
Federal				
U.S. Access Board	Public Right-of-Way Accessibility Guidelines	2023	Guidebook	Link to the document
Federal Highway Administration (FHWA)	Manual on Uniform Traffic Control Devices, 11th Edition	2023	Guidebook	Link to the document
FHWA	Truck Parking Development Handbook	2022	Guidebook	Link to the document
National Highway Traffic Safety Administration (NHTSA)	Bicycle Safety Guidelines	2022	Guidebook	Link to the document
National Association of City Transportation Officials (NACTO)	NACTO Urban Street Design Guide	2013	Guidebook	Link to the document
FHWA	FHWA Course on Bicycle and Pedestrian Transportation	2013	Guidebook	Link to the document
U.S. Department of Justice	2010 ADA Standards for Accessible Design	2010	Ordinance/Law	Link to the document
State				
Georgia	Design Policy Manual	2024	Guidebook	Link to the document
Georgia	Traffic Signal Design Guidelines	2023	Guide	Link to the document

Jurisdiction	Policy	Year	Type	URL
Regional				
ARC	Management and Design Guidelines for the Regional Throughfare Network	2011	Guidebook	<u>Link to the document</u>
ARC	Atlanta Regional Freight Mobility Plan Design Guidelines	2024	Guidebook	<u>Link to the document</u>
County				
Henry County	Code of Ordinances	2024	Ordinance/Law	<u>Link to the document</u>
City				
City of Locust Grove	Code of Ordinances	2024	Ordinance/Law	<u>Link to the document</u>
City of McDonough	Code of Ordinances	2024	Ordinance/Law	<u>Link to the document</u>
City of Stockbridge	Code of Ordinances	2024	Ordinance/Law	<u>Link to the document</u>

4.1 Pedestrian Safety Policies

4.1.1 Sidewalk Construction Warrants

4.1.1.1 Federal Requirements and Guidance for Sidewalk Construction Warrants

Federal guidance emphasizes prioritizing pedestrian infrastructure to encourage walking.⁴¹ Among the reviewed policy documents in **Table 4-1**, FHWA recommends requiring sidewalk installation or replacement during site development and major renovation projects. Annual curb ramp programs are recommended to install ADA-compliant ramps where citizens request in order to provide access for wheelchair users when crossing streets.⁴¹ In 2024, the U.S. Access Board developed the Public Right-of-Way Accessibility Guidelines (PROWAG). The board proposed rules that new construction of pedestrian facilities should fully comply with PROWAG accessibility standards, and the modification or addition of pedestrian facilities in the existing public right-of-way should comply as much as physically possible, given existing constraints.⁴¹

4.1.1.2 State and Regional Requirements and Guidance for Sidewalk Construction Warrants

The GDOT Design Manual requires pedestrian accommodation in all planning studies and projects within urban areas.⁴² Specific conditions warranting pedestrian facilities include proximity to activity generators and destinations, evidence of pedestrian traffic, high crash rates, and locally identified needs through adopted planning studies. The manual also provides guidelines for considering pedestrian accommodations in projects within one mile of major public facilities or urbanizing areas.

4.1.1.3 Local Requirements and Standards for Sidewalk Construction Warrants

Henry County's zoning code requires compliance with GDOT standards. Sidewalks are required on both sides of streets within all commercial, industrial, residential subdivisions, and mixed-use developments. In the multi-use, overlay, interchange activity center zoning districts and conventional subdivisions, sidewalks should be connected directly and conveniently to adjacent uses or buildings within the development. Builders must install sidewalks before a certificate of occupancy is issued for newly constructed buildings. The developer should also install sidewalks in common areas before the three-year maintenance period ends. After this period, builders should repair any damaged curbs or sidewalks before issuing occupancy certificates.⁴³

Cities generally follow Henry County's requirements with some minor deviations. The City of McDonough requires sidewalks on both sides of subdivision streets,⁴⁴ while the City of Hampton mandates new sidewalks on all existing and new streets except for minor building expansions.⁴⁵ All cities follow the county's requirement that builders take responsibility for repairing broken curbs and sidewalks after the three-year maintenance period before a certificate of occupancy is issued.

⁴¹ Federal Highway Administration, FHWA Course on Bicycle and Pedestrian Transportation, 3-4 – 3-5

⁴² Georgia Department of Transportation, Design Policy Manual (Oct 2024),

⁴³ Henry County, Code of Ordinances (Oct 2024), 8.01.00, 8.01.09, 4.01-4.05.

https://library.municode.com/ga/henry_county/codes/code_of_ordinances?nodeId=PTIICOOR_APXAUNLADECO_CH8INIM_S8.01.00TRSYST

⁴⁴ City of McDonough, Code of Ordinances (Apr 2024), 16.16.410

https://library.municode.com/ga/mcdonough/codes/code_of_ordinances?nodeId=CIMCRESUOR_TIT16SUREDE_CH16.16IMST_16.16.410SI

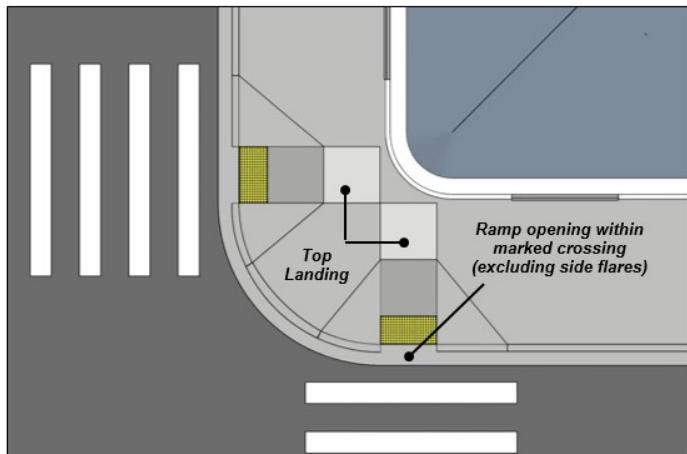
⁴⁵ City of Hampton, Code of Ordinances (Oct 2024), Sec. 3-5.

https://library.municode.com/ga/hampton/codes/code_of_ordinances?nodeId=PTIICOOR_APXAZO_ART3GEPR_S3-5SIST

4.1.1.4 Local Plan Considerations for Improving Sidewalk Construction Warrants

Plans at the county and local level emphasize updating the county's Unified Land Development Code (ULDC) to require the construction of pedestrian facilities in all new developments in both cities and unincorporated areas, particularly in medium-density suburban regions.⁴⁶

4.1.1.5 Peer Community Approaches to Sidewalk Construction Warrants


Gwinnett County mandates sidewalk installation within new developments and along abutting streets. Gwinnett County also requires sidewalks along all roadway projects.⁴⁷ The City of Acworth emphasizes that sidewalks are required to be included in redevelopment projects in residential areas and connect to adjacent neighborhoods. Following FHWA guidance, Bulloch County sets project priorities through a list of criteria, and all pedestrian and bike projects planned through fiscal year 2030 are considered a high priority.⁴⁸ These policies could be considered to increase the sidewalk network coverage and connectivity in Henry County.

4.1.2 Pedestrian Infrastructure Design

4.1.2.1 Federal Requirements and Guidance for Pedestrian Infrastructure Design

Federal guidelines through FHWA and ADA establish context-sensitive standards for pedestrian infrastructure design. The ADA Accessibility Standards require that all new construction and alterations must have accessible routes from public streets, sidewalks, parking lots, passenger loading zones and transportation stops within the site.⁴⁹ The ADA standards also emphasize the need for detectable warning surfaces and proper curb ramp placement at intersections,⁴⁹ as shown in **Figure 4-1**.

Figure 4-1 Curb Ramps at Intersections

Beyond these baseline accessibility requirements, FHWA recommends wider sidewalks near schools, recreational centers, and commercial zones than standard residential areas. NACTO similarly differentiates

⁴⁶ Henry County, 2045 Comprehensive Plan (2023), 118.

⁴⁷ Gwinnett County, Building the Daily Community in Gwinnett: the 2045 Unified Plan Chapter 6 (Feb 2024) 302-308 <https://www.gwinnettcounty.com/static/departments/PlanningDevelopment/pdf/6-transportation.pdf>

⁴⁸ City of Statesboro and Bulloch County, 2045 Long Range Transportation Plan (Nov 2024), 85. <https://www.statesboroga.gov/wp-content/uploads/2024/11/Bulloch-2045-LRTP-Update.pdf>

⁴⁹ U.S. Access Board, Guide to the ADA Accessibility Standards (2010), Chapters 2 & 4. <https://www.access-board.gov/ada/guides/chapter-4-ramps-and-curb-ramps/#curb-ramps-at-intersections>

sidewalk design requirements based on land use. Downtown sidewalks are generally designed to accommodate various public uses. Typically, a wider sidewalk design includes a frontage zone, a pedestrian through zone, street furniture, and a buffer zone,⁵⁰ as shown in **Figure 4-2**.

Figure 4-2 NACTO Sidewalk Zones

4.1.2.2 State and Regional Requirements and Guidance for Pedestrian Infrastructure Design

GDOT requires, and ARC recommends, minimum sidewalk widths of 5 feet with ADA compliance.⁵¹ Wider sidewalks with buffer zones are recommended in low-speed suburban areas⁵² and urban areas with higher pedestrian traffic. In addition, ARC recommends sidewalks along property edges between parking lots and employee entrances in industrial developments,⁵³ which provides a separate pathway for employees to access the facility safely. A buffer is also recommended for sidewalks in industrial areas to prevent pedestrians from being uncomfortably close to trucks or in the blind view of truck drivers.⁵³

4.1.2.3 Local Requirements and Standards for Pedestrian Infrastructure Design

Local jurisdictions generally reiterate federal and state minimum sidewalk design requirements. The City of Hampton's zoning ordinances define pedestrian and landscape zones as sidewalk components.⁵⁴ The landscape zone requires the planting of trees, but utilities that do not obstruct pedestrian access can also be installed here. The sidewalk zone should be continuous to the landscape zone, and a smooth transition is needed when two sidewalk segments have different widths.

County and city zoning ordinances also emphasize pedestrian safety through lighting requirements. In Henry County's zoning ordinances, sites must include a lighting plan that includes pedestrian illumination as well as roadway streetlights.⁵⁵ Jurisdictions also specify obstruction prevention measures, such as prohibiting the construction of fences on sidewalks and prohibiting bikes and automobiles from operating

⁵⁰ NACTO, Urban Street Design Guide - Sidewalk zones [Sidewalk Zones - NACTO](#)

⁵¹ Georgia Department of Transportation, Design Policy Manual (Oct 2024), 9-22.

⁵² Atlanta Regional Commission, Management and Design Guidelines for the Regional Thoroughfare Network, 8.

⁵³ Atlanta Regional Commission, Atlanta Regional Freight Mobility Plan Design Guidelines (Nov 2024), 17, 33.

⁵⁴ City of Hampton, Code of Ordinances (Oct 2024), Sec. 3-5, Sec. 54-10.

https://library.municode.com/ga/hampton/codes/code_of_ordinances?nodeId=PTIICOR_APXAZO_ART3GEPR_S3-5SIST

⁵⁵ Henry County, Code of Ordinances (Oct 2024), 8.01.11.

https://library.municode.com/ga/henry_county/codes/code_of_ordinances?nodeId=PTIICOR_APXAUNLADECO_C_H8INIM_S8.01.00TRSYST

on sidewalks.⁵⁶ In the City of Hampton, micromobility devices such as skateboards and scooters are only allowed on sidewalks and other paved public areas with posted notices,⁵⁴ but the City of Stockbridge does not allow such use on any sidewalks.⁵⁶ For landscaping, the Cities of Locust Grove, McDonough, and Hampton require canopies not to block pedestrian access, lighting, or intersection visibility.⁵⁷

4.1.2.4 Local Plan Considerations for Pedestrian Infrastructure Design

The *Henry County CTP* recommends the adoption of a Complete Streets policy for roadway projects to ensure pedestrian and bicyclist accommodation in all roadway projects.⁵⁸ Local planning documents have established comprehensive strategies for developing pedestrian infrastructure with ADA compliance across land uses. For example, in the *Henry County Comprehensive Plan*, development intensity guides specific requirements. A 5 ft sidewalk with a 3 ft buffer is required at a minimum in low-density areas, while high-density mixed-use and commercial zones need wider sidewalks. This aligns with federal guidance as well.⁵⁹

ARC has found that sidewalks can reduce crashes by up to 89 percent.⁶⁰ The agency also developed a countermeasure matrix for pedestrian and biker safety, shown in **Figure 4-3**, which includes advance warning signage, high-visibility crosswalks, and pedestrian refugee islands. The individual or combined use of these facilities significantly reduce crashes, and the prioritization of installing such facilities is recommended to focus on areas with high pedestrian propensity. Plan recommendations at the municipal level, such as the *City of Stockbridge LCI 10-Year Update*⁶³ and *City of McDonough Comprehensive Plan*,⁶¹ support these countermeasures laid out in ARC's Regional Safety Strategy. Specifically, multi-use trails and high-crash-rate corridors, such as North Henry Boulevard in the City of Stockbridge, should prioritize these countermeasures.^{62, 63}

⁵⁶ City of Stockbridge, Code of Ordinances (Nov 2024), 5.04.040, 5.04.090.

https://library.municode.com/ga/stockbridge/codes/code_of_ordinances?nodeId=TIT5PUWO_CH5.04STSI_ARTIGE_PR_5.04.040SI

⁵⁷ City of Locust Grove, Code of Ordinances (July 2024), 16.04.092.

https://library.municode.com/ga/locust_grove/codes/code_of_ordinances?nodeId=TIT16SU_CH16.04SU_ARTIVIM_ST_16.04.092SI

⁵⁸ Henry County Transportation Plan. Pond. 2022. p. 229. 1560dc01-e718-4a31-8c7d-bd149984bfe9

⁵⁹ Henry County, 2045 Comprehensive Plan (2023), 97-98

⁶⁰ Atlanta Regional Commission, Regional Safety Strategy (May 2023), 49.

⁶¹ City of McDonough Comprehensive Plan 2024-2028 Five-Year Update (2023), 49-50.

⁶² Henry County, Trails Plan and Trails Way Finding Plan (July 2022), 43.

⁶³ City of Stockbridge, Livable Centers Initiative 10-Year Update. July 2012. p. 29, 92-97.

Figure 4-3 Pedestrian and Bicycle Countermeasures Matrix in ARC Regional Safety Strategy⁶⁴

COUNTERMEASURE	HIGH SPEEDS	HIGH TRAFFIC VOLUMES	HIGH PEDESTRIAN VOLUMES	HIGH BICYCLE VOLUMES	MULTIPLE LANES	NO MEDIAN	LACK OF FACILITIES	LIMITED SIGHT DISTANCE	POOR VISIBILITY
Advance warning signs and markings	✓	✓	✓	✓	✓		✓	✓	✓
Curb extensions			✓		✓	✓	✓	✓	✓
Dedicated bicycle lanes	✓	✓		✓	✓		✓		
Grade separated crossing	✓	✓	✓	✓	✓	✓		✓	
High visibility crosswalk				✓			✓		✓
Leading pedestrian interval	✓	✓	✓		✓				
Lighting			✓	✓			✓		✓
Parking restriction near crossing			✓			✓	✓	✓	✓
Pedestrian hybrid signal	✓	✓	✓		✓	✓		✓	✓
Pedestrian refuge island	✓	✓	✓		✓	✓	✓	✓	✓
Prohibit right-turn on red		✓	✓					✓	✓
Protected left-turn phasing	✓	✓	✓					✓	✓
Raised crosswalk			✓				✓		
Rapid rectangular flashing beacon	✓	✓	✓		✓	✓			✓
Road diet	✓			✓	✓	✓	✓		
Separated multiuse path	✓	✓	✓	✓			✓		
Sidewalks	✓	✓	✓		✓		✓		✓

4.1.2.5 Peer Community Approaches to Pedestrian Infrastructure Design

Peer communities can serve as a model for progressive recommendations and policies for pedestrian safety. The Transportation Chapter of the *Gwinnett 2045 Unified Plan* has a strong emphasis on inter-parcel connectivity, requiring developers to link new sidewalks with adjacent properties. Specific design elements such as striping and signage on multi-use sidepaths are recommended in order to mitigate automobile-pedestrian conflicts at intersections.⁶⁵ Bulloch County Zoning Ordinances also emphasize that new commercial or multi-family residential developments need sidewalk construction between two adjacent land uses and the internal sidewalk system should connect to public sidewalk systems.⁶⁶ Crosswalks are recommended to provide access to schools, recreational centers, and other public facilities.⁶⁷

⁶⁴ Atlanta Regional Commission, Regional Safety Strategy (May 2023), 47.

⁶⁵ Gwinnett County, Building the Daily Community in Gwinnett: the 2045 Unified Plan Chapter 6 (Feb 2024) 302-308 <https://www.gwinnettcounty.com/static/departments/PlanningDevelopment/pdf/6-transportation.pdf>

⁶⁶ Bulloch County, Code of Ordinances (Apr. 2024), Sec 7.2

https://library.municode.com/ga/bulloch_county/codes/code_of_ordinances?nodeId=PTIICOR_APXBSUREAP42023_ARTVIIDEST_S7.2ST

⁶⁷ Bulloch County, Code of Ordinances (Apr. 2024), B-1-7.3

https://library.municode.com/ga/bulloch_county/codes/code_of_ordinances?nodeId=PTIICOR_APXB-1SURENO31992_ARTB-1-VIIDEST_B-1-7.3PEWA

The transportation system in the City of Acworth is similar to cities in Henry County. I-75 connects with major feeder corridors in commercial zones, resulting in safety challenges for VRUs. The City of Acworth's design policies are progressive and require sidewalks along commercial zones, main corridors, and campus living areas to maximize the use of public transportation hubs,⁶⁸ which solves their first- and last-mile connectivity issues.²³ The city's zoning ordinances also mandate inspecting existing sidewalks and repairing their deficiencies,⁶⁹ resulting in a lot of sidewalks in perimeter living areas in new and good condition.⁷⁰

⁶⁸ Atlanta Regional Commission, City of Acworth Comprehensive Plan (Sep 2022), 35. <https://acworth-ga.gov/wp-content/uploads/2023/08/cityofAcworth2022ComprehensivePlanForAdoption.pdf>

⁶⁹ City of Acworth, Code of Ordinances (Nov 2024), Sec. 73-151. https://library.municode.com/ga/acworth/codes/code_of_ordinances?nodeId=PTIICOOR_CH73ZO_ARTVIIISIDE_S7_3-151SIRE

⁷⁰ Atlanta Regional Commission, City of Acworth Comprehensive Plan (Sep 2022), 33. <https://acworth-ga.gov/wp-content/uploads/2023/08/cityofAcworth2022ComprehensivePlanForAdoption.pdf>

4.2 Bicycle Safety Policies

4.2.1 Bicycle Infrastructure Warrants and Design

4.2.1.1 Federal Requirements and Guidance for Bicycle Infrastructure

Federal guidance encourages building out bicycle infrastructure to encourage active transportation use.⁷¹ Additionally, FHWA recommends integrating bike infrastructure into public rights-of-way during development and major renovation projects whenever possible. In the *Separated Bike Lane Planning and Design Guide*, FHWA provides guidance on bike lane widths (typically 5-7 feet), establishes a comprehensive standard for separated bicycle lanes, and addresses intersection treatments to minimize conflicts with turning vehicles.⁷²

FHWA provides several guidelines regarding bicycle safety infrastructure, particularly regarding how on-road bike infrastructure is marked and signalized. For pavement markings, FHWA recommends 6-inch solid white lines to mark on-street bike lanes and green-colored pavement to highlight conflict zones with motor vehicles, such as in intersections and at driveways. In addition, bike boxes can be used at intersections to improve cyclist visibility by giving them space to queue ahead of vehicles at the stop bar.⁶⁴

At bike network intersections with roadways, there are several ITS interventions that can help improve the safety and mobility of people biking and driving. First, traffic signals at these intersections can be timed to account for bicycle crossing speeds, which are usually 14.7 feet per second. Designated signals for bicyclists can make it clear to the user when the cyclist has the right-of-way. The timing of traffic signals can be further adjusted through protected intervals, such as by timing signals to allow cyclists to get a head start before drivers enter the intersection, ensuring cyclist visibility and avoiding potential collisions upon start-up.⁷³ Bike detection can also be implemented to trigger signal timing to allow cyclists to cross; although this method is more costly, it is helpful to allow safe crossings at roadways where bike networks cross major roadways with high volumes of traffic while minimizing the occurrence of delays to drivers.⁷⁴

4.2.1.2 State and Regional Requirements and Guidance for Bicycle Infrastructure

The *GDOT Design Manual* encourages incorporating bicycle accommodation in all planning studies and projects as part of its Complete Streets Initiative for improving mobility, access, and safety.⁷⁵ Furthermore, it recommends designing bicycle facilities to encourage bicycling behavior that is as predictable as possible when interacting with motor vehicle traffic. The *Georgia Pedestrian Safety Action Plan* promotes Complete Streets policies to accommodate all road users, recommends targeted safety campaigns for VRUs, and encourages the development of bicycle networks to connect neighborhoods.⁷⁶

⁷¹ Federal Highway Administration, FHWA Course on Bicycle and Pedestrian Transportation, 3-4. <https://highways.dot.gov/safety>

⁷² FHWA Separated Bike Lane Planning and Design Guide.

https://nacto.org/wp-content/uploads/2-4_FHWA-Separated-Bike-Lane-Guide-ch-5_2014.pdf, 102-106

⁷³ Institute for Transportation Engineers, Resources, Signal Timing and Phasing for Bicycles.

<https://www.ite.org/technical-resources/topics/complete-streets/bicycle-signals/signal-timing-and-phasing-for-bicycles/>

⁷⁴ Institute for Transportation Engineers, Resources, Signal Detection for Bicycles. <https://www.ite.org/technical-resources/topics/complete-streets/bicycle-signals/signal-detection-for-bicycles/>

⁷⁵ Georgia Department of Transportation, Design Policy Manual (Oct 2024).

<https://www.dot.ga.gov/partnersmart/designmanuals/designpolicy/gdot-dpm.pdf>. 9-1 - 9-3

⁷⁶ Georgia Pedestrian Safety Action Plan 2018-2022.

<https://www.dot.ga.gov/DriveSmart/Travel/BikePed/BikePedSAP.pdf>, 55

ARC plans to implement a regional trail network strategy by working with local partners to develop regionally significant trail corridors. Additionally, ARC encourages local efforts to become Walk and Bike-Friendly Communities and adopt a Vision Zero approach to roadway safety design elements.⁷⁷

4.2.1.3 Local Requirements and Standards for Bicycle Infrastructure

The Henry County Code of Ordinances requires an inventory of all transportation facilities, including bicycle facilities, to be included in a Traffic Impact Study (TIS). Any new pedestrian and bicycle transportation needs as a result of proposed developments should be determined in these studies.⁷⁸

The City of Stockbridge has established standards for bike parking. The standards include:⁷⁹

- Bicycle parking should be located within all mixed-use developments and conveniently located near the most convenient automobile spaces (other than those spaces for people with disabilities).
- Bicycle parking should be an integral part of the overall site layout and designed to minimize visual clutter.
- Bicycle parking should be provided in a well-lit area.
- Ideally, bicycle parking spaces outside of a building should be located within a one-hundred-foot diameter of the primary building entrance.
- Bicycle parking areas should, preferably, afford a four-foot-wide access aisle to ensure safe access to spaces.
- All bicycle racks and lockers should be securely anchored to the ground or building structure.

Only Stockbridge requires that bicycle parking be included within all mixed-use developments. There are currently no local ordinances requiring the provision of bicycle lanes in Henry County.

4.2.1.4 Peer Community Approaches to Bicycle Infrastructure

Stockbridge is the only city in Henry County to have specific local ordinances addressing bicycle infrastructure beyond adhering to regional and state laws. This is consistent with many counties in Georgia, where local bicycle regulations are often limited or absent. Several downtown redevelopment plans cover the addition of bicycle infrastructure and safety elements. The City of Tifton requires bicycle lanes or paths to be included with any new planned development urban district.⁸⁰

⁷⁷ Regional Bike-Pedestrian Plan (Walk,Bike,Thrive).

<https://atlantaregional.org/what-we-do/transportation-planning/bicycle-pedestrian/bike-pedestrian-plan-walk-bike-thrive/>

⁷⁸ Henry County, Code of Ordinances (Oct 2024), 8.01.00.

https://library.municode.com/ga/henry_county/codes/code_of_ordinances?nodeId=PTIIICOR_APXAUNLADECO_CH8INIM_S8.01.00TRSYST

⁷⁹ Stockbridge, Code of Ordinances (November 2024), 4.8.18.

https://library.municode.com/ga/stockbridge/codes/code_of_ordinances?nodeId=TIT12UNDECO_CH4DEST_4.8.18BIST

⁸⁰ City of Tifton Code of Ordinance Sec. 4.07.00.

Across the state, bicycle networks have been shown to work best as a part of a regional bicycling network. The *Athens in Motion Plan* details bicycle infrastructure safety designs for the entire county.⁸¹ Similarly, Coweta County's CTP details policies to increase bicycle facilities across the county where feasible.⁸²

4.2.2 E-Bike Use

4.2.2.1 Federal Requirement and Guidance for E-Bike Use

E-bikes are defined as "low-speed electric bicycles" with fully operable pedals, a motor that produces less than 750 watts of continuous power, and a maximum top speed of 20 MPH when powered only by the electric motor.⁸³ E-bike usage is governed by state law.⁸⁴

4.2.2.2 State and Regional Requirements and Guidance for E-Bike Use

Georgia regulates e-bikes like bicycles. However, Class 3-e-bikes, which reach speeds up to 28 MPH,⁸⁵ are not allowed on bicycle or shared use paths unless they are within or adjacent to a highway or roadway or they are specifically allowed by the local authority or state agency with jurisdiction.

4.2.2.3 Local Requirements and Standards for E-Bike Use

There are no local ordinances regarding the use and operation of e-bikes.

4.2.2.4 Peer Community Approaches to E-Bike Use

The City of Douglas has a specific ordinance prohibiting the use of motorized vehicles, including e-bikes, within the confines of any city park or walking trail.⁸⁶

Depending on the jurisdiction, the classification and regulation of e-bikes varies based on the three-class system used to classify them. Manufacturers limit the speed of Class 1 and Class 2 E-bikes to 20 mph, but cities can impose speed limits on multi-use trails for additional safety provisions. For example, the Atlanta Beltline enforces speed zones on part of the Beltline that apply to all bicycles.⁸⁷

Henry County is similar to other counties in Georgia in terms of not having specific local ordinances addressing electric bicycle safety beyond adhering to state laws. However, the rise of shared micro-mobility services is growing beyond dense urban areas into more suburban areas. Therefore, Henry County could adopt policies to regulate shareable dockless mobility devices, similar to those of the City of Atlanta. The main policy guidelines include:⁸⁸

⁸¹ Athens in Motion Bicycle/Pedestrian Master Plan.

<https://www.acgov.com/DocumentCenter/View/54756/Athens-in-Motion-Plan---Full-Plan>

⁸² Coweta County Comprehensive Plan (2021-2041). [638688413469800000](https://www.coweta.org/DocumentCenter/View/638688413469800000)

⁸³ General Provisions; Electric Bicycles.

<https://www.federalregister.gov/documents/2020/11/02/2020-22129/general-provisions-electric-bicycles>

⁸⁴ City of Portland Municipal Code. 16.70. <https://www.portland.gov/code/16/70#toc--16-70-300-bicycles>

⁸⁵ Bosch. Why More States Need to Adopt the Three-Class E-Bike System. <https://www.bosch-ebike.com/us/everything-about-the-ebike/stories/three-class-ebike-system#:~:text=Class%201%3A%20eBikes%20that%20are,assisted%20speed%20of%2028%20mph.>

⁸⁶ City of Douglas Code of Ordinance. Sec. 28-8.

https://library.municode.com/ga/douglas/codes/code_of_ordinances?nodeId=PTIICOOR_CH28PARE_S28-8MOVE

⁸⁷ Beltline creates speed zone, parking areas for e-scooters.

https://issuu.com/reporter_newspapers/docs/070119_intown_1-52web/s/20679408

⁸⁸ City of Atlanta Code of Ordinance Article X sec. 150-403.

https://library.municode.com/ga/atlanta/codes/code_of_ordinances?nodeId=COORATGEVOII_CH150TRVE_ARTXSD_OMODE_S150-403A

- The motor of the permitted shareable dockless mobility devices must not alone be capable of propelling the device in excess of 15 miles per hour.
- Shareable dockless mobility devices shall not be operated by more than one person at a time.
- Permitted operators shall use the most advanced technology as determined by the commissioner of the Department of Transportation to ensure safe operations for all and at minimum shall comply with any safety requirements set forth in the administrative regulations.
- All permitted shareable dockless mobility devices must include visible signage to inform users and non-users that riding on the sidewalk is illegal.

4.3 Freight Safety Policies

Henry County includes a portion of I-75 South, a part of Georgia's Freight Corridor Network. Henry County is 220 miles from Savannah, nearly the exact distance a single truck driver can travel from the Port of Savannah, deliver shipments, and return to the starting point within the period of one work shift (typically 11 hours).⁸⁹ Henry County's freight network includes railroad infrastructure. Norfolk Southern has three lines in the county, and 42 public railroads at grade crossings are associated with these lines.⁹⁰ From the Henry County CTP, sixteen Developments of Regional Impact (DRIs) in Henry County were submitted for review by the Atlanta Regional Commission from 2015 to 2021. If those developments are constructed, eleven of those sixteen are industrial projects that will expand the industrial freight cluster at I-75 in McDonough, contributing to greater congestion in the area.⁹¹ The blend of these factors contributes to the most common freight issues in Henry County, such as truck traffic congestion, roadway-railroad crossings, unsignalized intersections on truck routes, and a shortage of truck parking.⁸⁷

4.3.1 Federal Requirements and Guidance for Freight Safety

The U.S. Department of Transportation (USDOT) has developed comprehensive strategies to enhance freight safety across various transportation modes. The *National Freight Strategic Plan* (NFSP) is a cornerstone of these efforts, which outlines USDOT's vision and goals for the nation's multimodal freight system.⁹² A key component of freight safety in this plan is to implement stricter safety standards among freight vehicles and invest in freight data, analytical tools, and research to assist state, regional, and local agencies in evaluating and addressing freight issues.

4.3.2 State and Regional Requirements and Guidance for Freight Safety

GDOT has developed a comprehensive strategy to enhance freight safety through the *Georgia Freight Plan*. The plan details the state agency's efforts toward modernizing infrastructure for freight movement, establishing freight safety performance metrics, and analyzing the complex issue of truck parking shortages and their impacts on roadway safety on highways.⁹³

⁸⁹ Atlanta Regional Freight Mobility Plan Update. <https://atlantaregional.org/what-we-do/transportation-planning/freight-transportation/atlanta-regional-freight-mobility-plan/>, 8

⁹⁰ State Highway-Rail Grade Crossing Action Plan.

<https://www.dot.ga.gov/PartnerSmart/utilities/Documents/StateCrossingActionPlan.pdf>

⁹¹ Henry County Transportation Plan. Pond. 2022. p. 42. [1560dc01-e718-4a31-8c7d-bd149984bfe9](https://www1560dc01-e718-4a31-8c7d-bd149984bfe9)

⁹² USDOT. National Freight Strategic Plan (NFSP). <https://www.transportation.gov/freight/NFSP>

⁹³ GDOT Freight Plan. <https://www.dot.ga.gov/InvestSmart/Freight/GeorgiaFreight/GeorgiaFreightPlan.pdf>, 5-18 – 5-

4.3.3 Local Requirements and Standards for Freight Safety

Henry County has established that all trucks within the county's unincorporated limits shall be operated only over and along the established truck routes and on the other designated roads over which truck travel is permitted, with exceptions.⁹⁴ Enforcement of these ordinances includes county administrator maps, signs maintained by the county Department of Transportation, and additional enforcement by any Henry County law enforcement when determining unlawful truck routing.⁹⁵

The Henry County Code of Ordinances has established truck routes depending on their origin and destination. These routes include interstates as well as several state highways and some county roads, such as Jodeco Road and Rock Quarry Road. Trucks are permitted to use other roadways not on truck routes to reach a destination within city limits via the shortest, most direct route possible.⁹⁶

Cities reinforce the unlawful travel of trucks on routes other than designated truck routes. In McDonough, it is also unlawful for trucks heavier than five tons to make a right-hand turn off the intersection of State Routes 23/42 and 20/81, where a "THRU TRUCK ROUTE" has been designated by a sign.⁹⁷

4.3.4 Local Plan Considerations for Freight Safety

The 2016 *Atlanta Regional Freight Mobility Plan Update* identifies the need for local area freight planning in the Atlanta region to address transportation issues. The *Henry County Freight Cluster Plan* is still under development; however, the *Henry County Comprehensive Plan* outlines several areas of focus for freight in Henry County, including road improvements as well as land use and transportation strategies around workplace centers.⁹⁸

4.3.5 Peer Community Approaches to Freight Safety

Henry County, Georgia, has implemented truck safety ordinances that are comparable to its peers. However, Henry County does not have a freight cluster plan in place like Spalding County, Fulton Industrial Boulevard, and Northwest Atlanta. Freight Cluster Plans are effective in summarizing freight-specific safety analyses, documenting technology advancements and trends, and planning for freight-oriented land uses and development. ARC also provides funding to entities to develop their own freight cluster plan.

⁹⁴ Henry County Code of Ordinances. Sec 3-4-322.

https://library.municode.com/ga/henry_county/codes/code_of_ordinances?nodeId=PTIIICOOR_CH3-4PUSA_SUBCHAPTER_4TRMOVE_ARTIITRRO_S3-4-322APRE

⁹⁵ Henry County Code of Ordinances. Sec 3-4-324.

https://library.municode.com/ga/henry_county/codes/code_of_ordinances?nodeId=PTIIICOOR_CH3-4PUSA_SUBCHAPTER_4TRMOVE_ARTIITRRO_S3-4-323TRROES

⁹⁶ Henry County Code of Ordinances. Sec. 3-4-323.

https://library.municode.com/ga/henry_county/codes/code_of_ordinances?nodeId=PTIIICOOR_CH3-4PUSA_SUBCHAPTER_4TRMOVE_ARTIITRRO_S3-4-324EN

⁹⁷ McDonough Code of Ordinances. 10.08.030.

https://library.municode.com/ga/mcdonough/codes/code_of_ordinances?nodeId=PTIIICOOR_TIT10VETR_CH10.08T_RROLOLI_10.08.030NORIHATUTR

⁹⁸ Henry County Comprehensive Plan 2045. [b0442793-aab0-4770-9209-fae7a84e2462](https://library.municode.com/ga/henry_county/codes/code_of_ordinances?nodeId=PTIIICOOR_CH3-4PUSA_SUBCHAPTER_4TRMOVE_ARTIITRRO_S3-4-323TRROES), 29-30

4.4 Transit Safety Policies

4.4.1 Federal Requirements and Guidance for Transit Safety

In addition to general transit safety requirements, including federally-required PM5 transportation performance measures (TPM) established by the Federal Transit Administration (FTA),^{99,100} there are guidelines to consider when establishing bus stops and managing roadways with mixed traffic between buses and other roadway users. For bus stop planning, it is important to consider locations with adequate lighting and pedestrian infrastructure, locations at the far side of intersections to improve visibility, ADA-compliant landing pads and minimum four-foot clearance from curb to shelter, and avoiding placing stops immediately before sharp curves and crests of hills.¹⁰¹

FTA recommends dedicated bus lanes in high-frequency corridors where possible and queue jump lanes at intersections to reduce both congestion and the risk of crashes with motor vehicles.¹⁰²

4.4.2 State and Regional Requirements and Guidance for Transit Safety

The 2020 ATL *Regional Transit Plan* emphasizes innovation and new technologies such as hazard detection systems or on-board cameras to enhance passenger safety.¹⁰³ Additionally, all safety actions in Henry County should incorporate feedback from transit plans in the future.¹⁰⁴

4.4.3 Local Requirements for Transit Safety

The Henry County Code of Ordinances does not have specific laws applying to transit safety but does state that TISs for all proposed developments will help with future transit planning.¹⁰⁵

4.4.4 Local Plan Considerations for Transit Safety

Henry County currently operates demand response service, and the Atlanta-region Transit Link Authority provides commuter bus services. There is significant support for transit projects to be included in future T-SPLOSTS. Henry County developed its first Transit Master Plan to identify ways to expand multimodal transportation choices, though there was little focus on roadway safety in regard to transit.¹⁰⁶

Henry County launched an on-demand micro-transit service within the McDonough transit zone in January 2024 with future plans to expand service to the City of Stockbridge as well as the rest of Henry County.¹⁰⁷ This on-demand transportation service is often safer than driving private vehicles, as professional drivers drive them and are subject to safety regulations and inspections.¹⁰⁵

⁹⁹ National Public Transportation Safety Plan (2024). <https://www.transit.dot.gov/sites/fta.dot.gov/files/2024-04/National-Safety-Plan-04-05-2024.pdf>

¹⁰⁰ FHWA. 2023. Highway Performance Monitoring System. <https://www.fhwa.dot.gov/policyinformation/hpms.cfm>

¹⁰¹ Stops, Spacing, Location and Design. <https://www.transit.dot.gov/research-innovation/stops-spacing-location-and-design>

¹⁰² FHWA Managed Lanes. https://ops.fhwa.dot.gov/freewaymgmt/managed_lanes.htm

¹⁰³ Regional Transit Plan. <https://content.civicplus.com/api/assets/ea1d99b3-ad79-480c-9b5b-301f16f63d26?cache=1800>

¹⁰⁴ 2022 Regional Transportation Plan. <https://content.civicplus.com/api/assets/19faa69c-19cd-4ca8-b5f2-76f9bcb42806?cache=1800>

¹⁰⁵ Henry County, Code of Ordinances (Oct 2024), 8.01.00.

¹⁰⁶ Henry County Transit Master Plan. [30373811-7cb1-40bc-a35b-e8e6a76cf0ae](https://www.henrycountyga.gov/30373811-7cb1-40bc-a35b-e8e6a76cf0ae)

¹⁰⁷ Henry Connect Microtransit. <https://www.henrycountyga.gov/585/Henry-Connect-Microtransit>

4.4.5 Peer Community Approaches to Transit Safety

Similar to other county plans in Georgia, there is no guidance on increasing passenger safety when using the micro-transit service. Bus-only lanes are still fairly new to the Atlanta area.

4.5 School Zone Safety

4.5.1 Federal Requirements and Guidance for School Zone Safety

Safe Routes to School (SRTS) is the main program that FHWA administers to promote walking and biking among students living within two-mile radii of schools.¹⁰⁸ SRTS is made available through the state's Transportation Alternatives funding. SRTS's primary goal is to improve children's well-being by creating safer and more accessible routes for active transportation.¹⁰⁸ The National Center for Safe Routes to School supports the initiative of Vision Zero for Youth with low-cost and quick build infrastructure improvements and overall neighborhood safety.¹⁰⁹

4.5.2 State and Regional Requirements and Guidance for School Zone Safety

The *GDOT Design Manual* specifies that projects within one mile of schools and public institutions should accommodate pedestrian infrastructure with ADA standards and prioritize low-cost and innovative designs to enhance safety.¹⁰⁸ This aligns with the primary initiatives of the SRTS program. Georgia permits the use of Automated Traffic Enforcement Safety Devices in school zones to ticket drivers unlawfully speeding in where students may be crossing.¹¹⁰ This data-driven tool helps increase children's safety and avoid over policing.¹¹¹ In addition to the SRTS program, *GDOT Vulnerable Roadway User Safety Assessment* also highlights other programs to promote students' traffic safety, including See and Be Seen, educational materials, and Safe Driving Summits.¹¹²

4.5.3 Local Requirements and Standards for School Zone Safety

Henry County's zoning code lacks specific standards for transportation safety in school zones, but several municipalities within the county have implemented measures to enhance safety. School zones within the McDonough, Hampton, and Stockbridge have a lower speed limit than the rest of the roadway's posted speed.^{113,114,115} However, the City of Locust Grove's Code of Ordinances does not cover regulations related to school traffic safety. The City of Hampton allows authorized staff to designate and maintain traffic control signages, including speed zones and school zones.¹¹⁴

¹⁰⁸ GDOT, Design Policy Manual (Oct 2024), 11-24 – 11-27.

¹⁰⁹ National Center for Safe Routes to School, [Safe Routes Info](#).

¹¹⁰ GDOT, Rules of GDOT Permitting Automated Traffic Enforcement Safety Devices in School Zones 672-20-02.

¹¹¹ ARC, Bike-Pedestrian Plan (2015), Safe Streets for Walking & Bicycling, 39.

¹¹² GDOT, Vulnerable Roadway User Safety Assessment (2024), 55-59.

¹¹³ City of McDonough, Code of Ordinances, 10.12.010.

https://library.municode.com/ga/mcdonough/codes/code_of_ordinances?nodeId=PTIICOOR_TIT10VETR_CH10.12S_PLI_10.12.010SPZODE

¹¹⁴ City of Hampton, Code of Ordinances, Sec 82-2, Sec 82-6.

https://library.municode.com/ga/hampton/codes/code_of_ordinances?nodeId=PTIICOOR_CH82TRVE_S82-2SPLI

https://library.municode.com/ga/hampton/codes/code_of_ordinances?nodeId=PTIICOOR_CH82TRVE_S82-6TRCOSIDE

¹¹⁵ City of Stockbridge, Code of Ordinances, 10.08.030.

https://library.municode.com/ga/stockbridge/codes/code_of_ordinances?nodeId=TIT10MOVETR_CH10.08TRRE_10_08.030SPLIPEROSCZO

4.5.4 Local Plan Considerations for School Zone Safety

The 2045 *Henry County Comprehensive Plan* and related regional plans emphasize creating safe, accessible environments for school children based on different land uses and corridor types. The Suburban Mix corridor designation prioritizes sidewalks within a half-mile radius of schools, parks, and community centers.¹¹⁶ Commercial and Industrial Corridors aim to provide safe facilities for pedestrians, school buses, and bicyclists, with connections to adjacent neighborhoods.¹¹⁷ Residential Corridors encourage moderate-speed travel.¹¹⁷ Short-term educational efforts include promoting programs like KidsWalk and SRTS.¹¹⁷ The CTP highlights the potential of school zones with flashing lights as cost-effective safety projects.¹¹⁸ while the *ARC Bike Pedestrian Plan* advocates for annual forums on walkability and bike-friendly infrastructure, including SRTS programs, to pursue safety.¹¹⁹ These initiatives improve road safety, promote health, and create sustainable transportation options, supported by partnerships between schools, communities, and state agencies.

4.5.5 Peer Community Approaches to School Zone Safety

The City of Atlanta and Decatur are pioneers in promoting safe and active transportation for students. In the City of Decatur, over 90% of elementary and middle schools participate in bicycling education programs,¹¹⁹ and the SRTS program supports 10 schools through 2024 and 2025 with regular committee meetings during the school year.¹²⁰ The City of Atlanta received a grant in 2022 to install a protected walk/bike lane near Crawford Long Middle School in an Equity Priority Area, enhancing safety and accessibility.¹²¹ Atlanta also hosts Bike & Roll to School Month events and provides bike racks to encourage active transportation.

¹¹⁶ Henry County, Comprehensive Plan 2045 (2023), 79.

¹¹⁷ Henry County/Cities Joint 2030 Comprehensive Plan (May 2008), 4-36 – 4-37, 7-23.

¹¹⁸ Henry County Transportation Plan. Pond. 2022. p. 90. 1560dc01-e718-4a31-8c7d-bd149984bfe9

¹¹⁹ ARC, Bike Pedestrian Plan (2015), 1-30 – 1-68, 3-11.

¹²⁰ City of Decatur, Safe Routes to School Program. <https://www.decaturga.com/parksrec/page/safe-routes-school>

¹²¹ City of Atlanta, Safe Routes to School. <https://atldot.atlantaga.gov/programs/safe-routes-to-school>

4.6 Roadway Safety Policies

Generally, state and regional agencies must comply with federal highway performance transportation performance measures, which involve setting targets to reduce crashes and fatalities and serious injuries from crashes.¹²² In addition to these efforts, local governments can adopt new policies for improving traffic signals and managing speeds in order to improve roadway safety in alignment with the Safe System Approach.

4.6.1 Traffic Signals

4.6.1.1 Federal Requirements and Guidance for Traffic Signals

USDOT drives the policies, guidelines, and design specifications for traffic signals. In 2023, FHWA developed the *11th Edition of the MUTCD*, which establishes national criteria for the use of traffic control devices such as signals, signage, barriers, pavement markings, etc.¹²³ The documentation highlights the use, implementation, and controls of various signals, from highway traffic signals to traffic control devices at railroad crossings.

4.6.1.2 State and Regional Requirements and Guidance for Traffic Signals

GDOT's *Traffic Signal Design Guidelines* identify the standards and preferences for local areas to use in traffic signal installations.¹²⁴ The guide outlines specifications for materials and equipment, design preference, coordination and cost, and permitting processes. Furthermore, this guideline has specified information regarding traffic signal communications, related signs for traffic signals, and vehicular detection, which can have an impact on how ITS affects roadway safety.

In addition, various plans and initiatives impact traffic signals and vehicular technology in Henry County. Although not a policy, GDOT and ARC entered a partnership for the *Regional Connected Vehicle Program* in 2020, signifying a priority of connected and autonomous vehicle infrastructure.¹²⁵ This program aims to expand connected vehicle technology and infrastructure in the Atlanta Metropolitan Region to 1,000 intersections. The program provides federal funding for 80% of the signal cost if the local municipality offers a 20% match.

4.6.1.3 Local Requirements for Traffic Signals

There are no ordinances or specifications from local municipalities regarding traffic signals and technology installation within Henry County. Henry County follows the best practice guidelines outlined in GDOT's *Traffic Signal Design Guidelines* and FHWA's 11th Edition MUTCD.¹²⁶

4.6.1.4 Local Plan Considerations for Traffic Signals

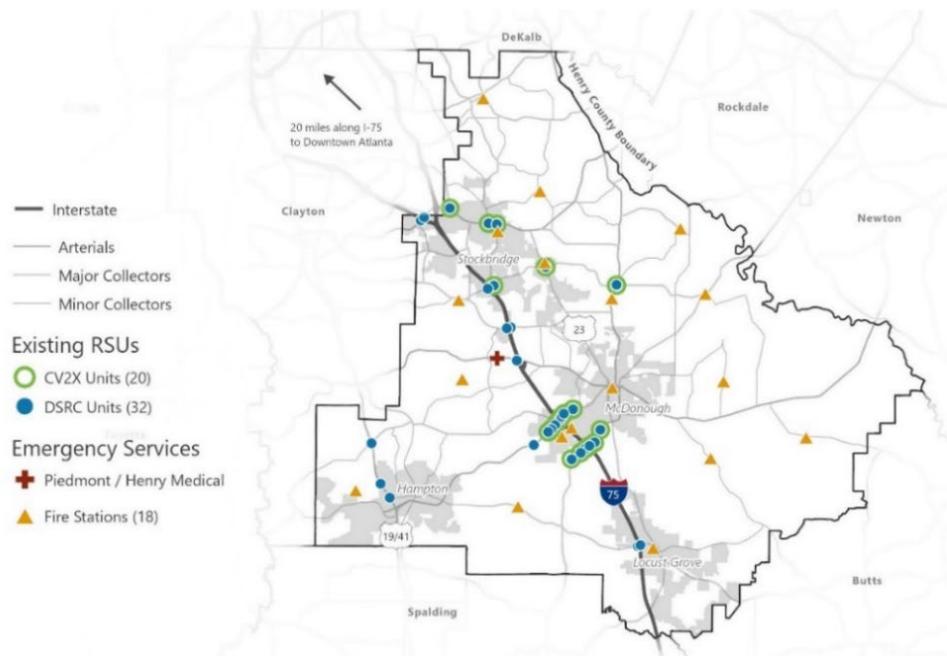
Henry County has begun to take advantage of ARC's Connected Vehicle Program and USDOT initiatives and grant programs. The county has plans to exceed state and regional standards in connected vehicle technology by upgrading traffic signals. In 2024, Henry County was awarded \$825,000 for the Strengthening Mobility and Revolutionizing Transportation (SMART) Grant Program through USDOT to

¹²² FHWA. 2023. Highway Performance Monitoring System. <https://www.fhwa.dot.gov/policyinformation/hpms.cfm>

¹²³ FHWA's Manual on Uniform Traffic Control Devices. 2023. https://mutcd.fhwa.dot.gov/kno_11th_Edition.htm

¹²⁴ GDOT's Traffic Signal Design Guidelines. 2023.

<https://www.dot.ga.gov/PartnerSmart/DesignManuals/SignalDesignManual/Traffic%20Signal%20Design%20Guidelines.pdf>


¹²⁵ Henry County Department of Transportation Planning. 2024. <https://www.henrycountyga.gov/337/Planning>

¹²⁶ GDOT's Traffic Signal Design Guidelines. 2023.

<https://www.dot.ga.gov/PartnerSmart/DesignManuals/SignalDesignManual/Traffic%20Signal%20Design%20Guidelines.pdf>

begin its *Connected Vehicle Pilot and Plan Development*.¹²⁷ Stage 1 Deployment of this effort will collect data through the use of existing and newly deployed infrastructure to pilot emergency vehicle preemption for Henry County Fire Department (HCFD) vehicles. The county will report whether the connected vehicle technology deployment has derived benefits, particularly for emergency vehicle response times. In Stage 2, Henry County plans to expand the technology to the remaining HCFD vehicles and Henry County Transit's fleet. **Figure 4-4** below provides the locations of the phase 1 connected vehicle infrastructure in Henry County where emergency vehicle preemption will be piloted.

Figure 4-4 Henry County Connected Vehicle Infrastructure Locations

In addition, local plans have identified the need for various traffic signal improvements. *The City of McDonough's Comprehensive Plan* identified the need for smart corridors and signals throughout its jurisdiction as well as the installation of new traffic signals. The *Henry County CTP* supports the expansion of connected vehicle technology via signal upgrades, freight signal priority, and connected vehicle deployments. Henry County's *Transit Master Plan* further supports transit signal priority.

Further, the CTP identifies railroad crossings as a potential safety risk. It recommends active grade crossings instead of passive grade crossings to prevent collisions, meaning that at-grade crossings should include active warning and control signs, bells, flashing lights, gates, and passive warning devices.¹²⁸

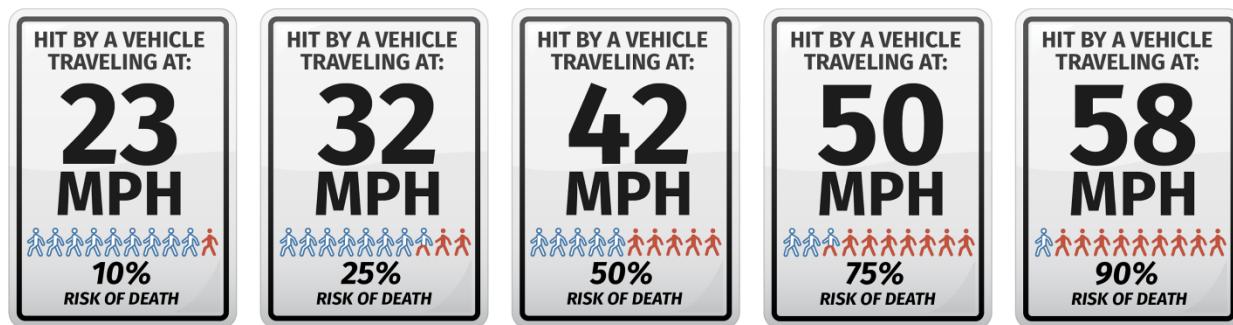
4.6.1.5 Peer Community Approaches to Traffic Signals

Henry County's Connected Vehicle Pilot and Plan Development is unique and ahead of many other entities throughout the United States and is one of the first connected vehicle initiatives in Atlanta Metro. This program intends to reduce emergency response times for HCFD, similar to how the City of Marietta's success in reducing their average response time to two minutes with the same technology.¹²⁹

¹²⁷ Henry County Department of Transportation Planning. 2024. <https://www.henrycountyga.gov/337/Planning>

¹²⁸ Henry County Transportation Plan. Pond. 2022. [1560dc01-e718-4a31-8c7d-bd149984bfe9](https://www.henrycountyga.gov/1560dc01-e718-4a31-8c7d-bd149984bfe9)

¹²⁹ City of Marietta marks 18 Months of Connected Transportation and Life Saving Technology. 2019. <https://www.mariettaga.gov/CivicAlerts.aspx?AID=2538>


4.6.2 Speed Management

4.6.2.1 Federal Requirements and Guidance for Speed Management

No federal agencies determine speed limits on a given roadway or facility. Instead, this authority is granted to states and local agencies. However, FHWA does provide some baseline recommendations regarding determining and establishing speed limits in the *11th Edition MUTCD*. The general recommendation is that the speed limits of a roadway should be within 5 MPH of the 85th percentile speed while also considering other external factors such as roadway design, traffic conditions, and pedestrian activity.¹³⁰

In 2022, the USDOT released its first-ever *National Roadway Safety Strategy* (NRSS), which sets the stage for prioritizing safety in the transportation system for all people.¹³¹ The speed of a vehicle is one of the primary factors in determining whether a crash results in a fatality or serious injury, particularly for vulnerable roadway users like pedestrians and cyclists. The likelihood of a pedestrian fatality involved in a vehicular crash increases as speeds increase.¹³² **Figure 4-5** below illustrates this relationship between travel speeds and injury severity.¹³² For this reason, speed management is a tenet of the Safe System Approach.

Figure 4-5 Likelihood of Pedestrian Fatalities based on Travel Speeds

4.6.2.2 State and Regional Requirements and Guidance for Speed Management

In general, most states have statutory laws determining speed limits on roadways, although other factors may be considered case-by-case. Georgia has defined the following maximum traveling speeds as general rules:¹³³

- 30 MPH in any Urban or Residential District
- 35 MPH on Unpaved County Roads
- 70 MPH on Rural Interstates
- 65 MPH on Urban Interstates or Multi-Lane Divided Highways
- 55 MPH in Other Areas

However, GDOT determines the appropriate travel speeds on state routes via its *Design Policy Manual* or when performing engineering studies. Speed recommendations are based on project type.

¹³⁰ FHWA's Manual on Uniform Traffic Control Devices. 2023. https://mutcd.fhwa.dot.gov/kno_11th_Edition.htm

¹³¹ USDOT's Safe System Approach for Speed Management. 2022.

https://highways.dot.gov/sites/fhwa.dot.gov/files/Safe_System_Approach_for_Speed_Management.pdf

¹³² USDOT. 2025. Safer Speeds. <https://www.transportation.gov/safe-system-approach/safer-speeds>

¹³³ GA Code § 40-6-181. 2023. <https://law.justia.com/codes/georgia/2022/title-40/chapter-6/article-9/section-40-6-181/>

4.6.2.3 Local Requirements for Speed Management

The City of Stockbridge and McDonough have local ordinances for designated speed zones.¹³⁴ These speed zones are sections of a roadway facility, such as school zones, that necessitate different statutory than the rest of the roadway's speed limits as determined by GDOT.¹³⁵ These zones are intended to lower speed limits where it is deemed appropriate, such as a portion of a facility near a school, roadways entering downtown centers, and more. The implementation of speed zones is a general practice for municipalities throughout Georgia and the United States. In Stockbridge, these speed zones include State Route 20, State Route 42, State Route 81, State Route 155, and various local facilities. McDonough's speed zones include school zones near Daniel Drive, Eagles Landing Parkway, and Mt. Zion Parkway.

4.6.2.4 Local Plan Considerations for Speed Management

In general, factors such as the number of lanes, lane widths, and shoulder widths have resounding effects on vehicle operating speeds and safety.¹³⁶ Research indicates that more space for vehicles ultimately results in the unintended consequence of higher travel speeds and higher risk of crashes.¹³⁷ More specifically, for every additional meter of lane width on suburban streets, travel speeds are expected to increase by 9 MPH.¹³⁸

The Henry County CTP recommends traffic calming measures and devices on Simpson and Old Griffin Roads.¹³⁹ Various local plans identify the needs and opportunities for traffic calming and speed management infrastructure, although this has yet to come to fruition.^{140,141,142,143}

¹³⁴ City of Stockbridge, (Ord. 02-53 § 1, 2002).

https://library.municode.com/ga/stockbridge/codes/code_of_ordinances?nodeId=TIT10MOVETR_CH10.08TRRE_10.08.020SPLIST; City of McDonough, (Ord. of 11-16-1992). 2024.

https://library.municode.com/ga/mcdonough/codes/code_of_ordinances?nodeId=PTIICOOR_TIT10VETR_CH10.12SPLI

¹³⁵ GDOT Setting Speed Limits with help from USLIMITS2. 2016.

<https://highways.dot.gov/sites/fhwa.dot.gov/files/2022-06/fhwasa16078.pdf>

¹³⁶ FHWA. 2015. Factors Influencing Operating Speeds and Safety on Rural and Suburban Roads. Publication No. FHWA-HRT-14-020. <https://www.fhwa.dot.gov/publications/research/safety/15030/006.cfm>

¹³⁷ Kay Fitzpatrick, Paul Carlson, Marcus Brewer, and Mark Wooldridge, "Design Factors That Affect Driver Speed on Suburban Arterials": *Transportation Research Record* 1751 (2000): 18–25.

¹³⁸ Design Factors that Affect Driver Speed on Suburban Streets. 2001.

https://safety.fhwa.dot.gov/speedmgt/ref_mats/fhwasa1304/69.htm

¹³⁹ Henry County Transportation Plan. Pond. 2022. [1560dc01-e718-4a31-8c7d-bd149984bfe9](https://www.henrycountyga.org/1560dc01-e718-4a31-8c7d-bd149984bfe9)

¹⁴⁰ City of McDonough Comprehensive Plan 2024-2028 (2023).

¹⁴¹ City of Stockbridge, Livable Centers Initiative 10-Year Update (July 2012)

¹⁴² City of Stockbridge, 2024 Comprehensive Plan (2023)

¹⁴³ City of McDonough Comprehensive Plan 2024-2028 Five-Year Update (2023)

4.6.2.5 Peer Community Approaches to Speed Management

Henry County and its corresponding municipalities are currently on par with its peers in Georgia and the United States by having local ordinances and designated speed zones. Cities such as Avondale Estates are leading the charge on the installation of traffic calming measures in the Atlanta metropolitan area. In June 2024, Avondale Estates began discussions to set aside \$100,000 for traffic calming measures such as new stop signs, lowering speed limits, narrowing of intersections, roadway striping, and street markings.¹⁴⁴ The Gainesville-Hall County MPO has adopted a complete streets policy and vision for a future where all projects are to be planned, designed, or constructed to provide multimodal options within reason and analysis.¹⁴⁵ The City of Brunswick has implemented local legislation requiring that all transportation projects should create complete streets, with few exceptions.¹⁴⁶

¹⁴⁴ Decaturish. 2024. Avondale Estates City Commission to consider allocating funding to traffic calming. <https://decaturish.com/2024/07/avondale-estates-city-commission-to-consider-allocating-funding-to-traffic-calming/>

¹⁴⁵ Gainesville-Hall MPO. 2017. Complete Streets Policy. <https://www.ghmpo.org/wp-content/uploads/2019/11/GHMPO-Complete-Streets-Policy-Adopted-August-8-2017-PDF.pdf>

¹⁴⁶ City of Brunswick, Complete Street Legislation, Ord. No. 1048, § 1, 4-5, 2017.

https://library.municode.com/ga/brunswick/codes/code_of_ordinances?nodeId=PTIICO_CH19ST_SI_ARTIVCOST

5 SUMMARY AND NEXT STEPS

This document presents a baseline for how Henry County and the cities of Hampton, Locust Grove, McDonough, and Stockbridge have incorporated safety into their planning efforts and how their policies facilitate the construction and safe use of a multimodal transportation network. This document will be used in conjunction with safety analyses and public and stakeholder input to identify project and policy recommendations as part of the TSAP.

As shown in **Table 5-1**, Henry County meets safety requirements and guidance in most areas at a federal level overall. At a regional level, Henry County has not incorporated many policies ARC recommends in terms of roadway right of way, developing a freight cluster plan, transit, and school safety. At a local level, the Henry County plans meet requirements and guidance. However, there are opportunities to adopt or tailor some strategies used in peer communities, including bicycle and pedestrian infrastructure and roadway right-of-way safety strategies, to advance safety in Henry County. The county and its cities exceed requirements and guidance for traffic signals by promoting the use of connected vehicle technology. The next steps will be to identify strengths and opportunities for enhancement in the current framework. The findings outlined here will serve as a foundation for strategic policy updates to advance roadway safety in Henry County and its cities.

Table 5-1 Safety Areas: Henry County Plans vs Requirements and Guidance

SAFETY AREA	FEDERAL	STATE AND REGIONAL	LOCAL	PEER COMMUNITIES
Pedestrian Infrastructure Construction Warrants and Maintenance				
Pedestrian Infrastructure Design				
Bicycle Infrastructure				
Roadway Right of Way				
E-bikes				
Freight				
Traffic Signals				

SAFETY AREA	FEDERAL	STATE AND REGIONAL	LOCAL	PEER COMMUNITIES
Speed Limits and Traffic Calming Measures				
Transit				
School Zone Safety				
LEGEND	Does Not Meet Requirements and Best Practices	Meets Requirements and Best Practices	Exceeds Requirements and Best Practices	

TOOLE
DESIGN

PROJECT CORRIDOR STUDIES REPORT

**HENRY COUNTY
TRANSPORTATION SAFETY ACTION PLAN**

Table of Contents

Corridor Studies Purpose	4
Data Sources	9
Corridor 1: Willow Lane / Industrial Boulevard from Brookshire Circle to Old Industrial Boulevard.....	10
Corridor 2: Richard Petty Boulevard / Woolsey Road from Bear Creek Boulevard to Perimeter Drive	17
Corridor 3: Patrick Henry Parkway / Rock Quarry Road from Country Club Drive to Banks Road	23
Corridor 4: Bill Gardner Parkway / Highway 42 S from Bandy Parkway to N Jackson Street	31
Corridor 5: Jonesboro Street from Doris Street to Atlanta Street.....	40

List of Abbreviations & Key Terms

AADT	Annual Average Daily Traffic
VPD	Vehicles Per Day
KABCO	Injury Severity Scale
FSI	Fatal or Serious Injury (K and A on the KABCO scale)
FI	Fatal and All Injuries (K, A, B and C on the KABCO scale)
FSI Rate	The percent of crashes that resulted in an FSI; calculated as [FSI Crashes] / [Total Number of Crashes]
GDOT	Georgia Department of Transportation
Vulnerable Roadway User	Pedestrian, bicyclist, or other Non-Automobile road user

Corridor Studies Purpose

To support the Henry County Transportation Safety Action Plan (TSAP), the project team reviewed the County's High Injury Network (HIN), prioritized corridors by jurisdiction, and developed focused corridor studies for the corridor with the most fatal and serious injury (FSI) crashes within each jurisdiction. This report supports three elements within the TSAP:

- **Project Identification:** Corridors along the HIN that have been identified for engineering roadway and network recommendations that will address the safety concerns identified in the TSAP's Descriptive Crash Analysis Report. Corridor studies on the top-ranked local corridors will help advance key local projects and inform a county-wide safety toolkit.
- **Project Prioritization:** HIN segments were ranked by safety need and equity scoring from the Demographics Analysis Report. These values are priorities of the county, member jurisdictions, and the SS4A program.
- **Engineering Toolkit:** Recommendations from these corridor studies informed a locally-relevant engineering toolkit, see Appendix.

Prioritization Methodology

The top HIN corridors (state and locally owned roads) within Henry County were assessed. Along the HIN, 23 priority corridors, listed in **Table 1** and shown in **Figure 1**, were identified based on the following steps and criteria:

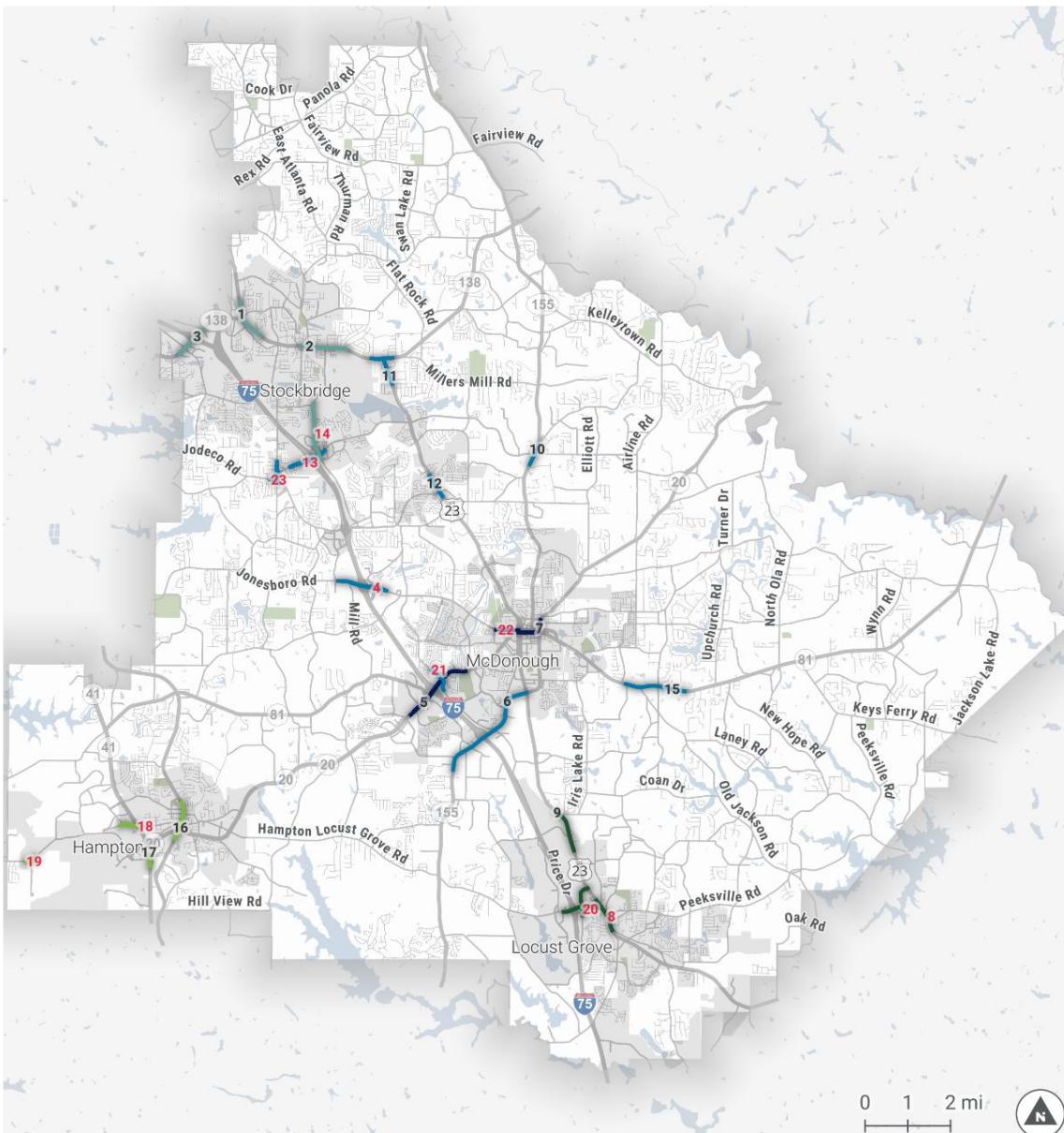

1. Segments were located along both the All Mode High-Injury Network and the All Mode High-Risk Network.
2. Segments were connected and defined as a project based on the segment with the highest crash score, with the total length limited to around 2 miles. Crashes were rated on a scale compared to the KABCO scale, with fatal or serious injury crashes scoring a 3, minor injury crashes scoring a 2, possible injury crashes scoring a 1, and property damage only crashes scoring a 0. Therefore, higher scoring segments usually had at least one or more FSI crash. Segments connected locations where higher scoring crashes occurred. The resulting list of segments is the TSAP's priority project list. This approach aligns with the principle of a Safe System Approach (SSA) of prioritizing the elimination of crashes that result in death or serious injury.
3. The priority project list was ranked according to fatal and serious injury (FSI) crashes.
4. For each jurisdiction, projects were then ranked by their FSI crashes and demographic classification.
5. Road ownership and functional classification of each corridor are included for informational purposes.

Table 1: Priority Projects

Table 1 lists the top 23 segments in Henry County. The order is based on FSI crashes.

Rank	Map ID	Road Name(s)	Segment Extents	Jurisdiction	FSI Crashes	Functional Class	Mileage
1	5	Highway 20/81 W, Highway 20 W (includes I-75 interchange)	International Ave to Westridge Industrial Blvd	McDonough	26	State Route Principal Arterial (southwest of I-75) Minor Arterial (northeast of I-75)	2.61
2	6	Highway 155 S (includes I-75 interchange)	Highway 42 S to Farris Dr	Henry County	12	State Route Principal Arterial (northeast of I-75) Minor Arterial (southwest of I-75)	2.70
3	9	Highway 42 S	Harris Dr to Bethlehem Rd	Locust Grove	11	State Route Minor Arterial	1.00
4	3	Highway 138 W (I-75 interchange)	Mt Zion Rd to North Mill Rd	Stockbridge	8	State Route Principal Arterial	1.20
5	21	Industrial Blvd, Willow Ln	Brookshire Cir to Old Industrial Blvd	Henry County	8	Local Road	0.62
6	1	North Henry Blvd	Shepherd Dr to Daniel Dr	Stockbridge	7	State Route 42 Major Arterial (south of SR 138) Minor Arterial (north of SR 138)	1.00
7	18	Richard Petty Blvd, Woolsey Rd	Bear Creek Blvd to Perimeter Dr	Hampton	7	Minor Collector	0.42
8	14	Patrick Henry Pkwy, Rock Quarry Rd	Country Club Dr to Banks Rd	Stockbridge	6	Local Road (south of Eagles Landing Pkwy) Minor Arterial (north of Eagles Landing Pkwy)	1.33
9	2	North Henry Blvd	Scott Blvd to Tye St	Stockbridge	5	State Route 42 Major Arterial	1.10
10	4	Jonesboro Rd (I-75 interchange)	Commercial Dr to Mount Olive Rd	Henry County	5	Principal Arterial	1.68
11	11	Highway 138 E, Highway 42 N, North Henry Blvd	Boulevard Dr to Brown Rd	Henry County	5	State Routes Principal Arterial (SR 138) Minor Arterial (SR 42)	1.13
12	13	Eagles Landing Pkwy, Hudson Bridge Rd (I-75 interchange)	Eagles Point Pkwy to Hudson Bridge Dr	Henry County	5	Minor Arterial	1.74

13	8	Bill Gardner Pkwy, Highway 42 S (includes I-75 interchange)	Bandy Pkwy to Jackson St	Locust Grove	4	Minor Arterial	1.72
14	7	Keys Ferry St, N Zack Hinton Pkwy	Griffin St to Tomlinson St	McDonough	3	State Route Minor Arterial Principal Arterial (only between Keys Ferry St to John Frank Ward Blvd)	0.80
15	12	Highway 42 N	W Campground Rd to Inverness Ave	Henry County	2	State Route Minor Arterial	0.60
16	15	Highway 81 E	Sowell Rd to Sunflower Meadows Dr	Henry County	2	State Route Principal Arterial	1.40
17	19	Lower Woolsey Rd	South Lee Rd to City Limits	Hampton	2	Major Collector	0.20
18	20	Market Place Blvd, Stanley K Tanger Blvd	Highway 42 to Tanger Dr	Locust Grove	2	Local Road	0.74
19	10	Highway 155 N	Moss Dr to Crumbley Rd	Henry County	1	State Route Principal Arterial	0.50
20	22	Jonesboro Rd, Jonesboro St	Atlanta St to Doris St	McDonough	1	Principal Arterial	0.53
21	23	Flippen Rd, Hudson Bridge Rd, Jodeco Rd	April Ave to Jodeco Station Dr	Henry County	1	Minor Arterial	0.77
22	16	East Main St N, East Main St S	Elm St to Highway 20 W	Hampton	0	Major Collector	0.90
23	17	Bear Creek Blvd, Highway 19/41 S	Lower Woolsey Rd to Bridges Dr	Hampton	0	State Route Major Arterial	0.34

Priority Projects

Project Candidates by Jurisdiction

- Stockbridge
- McDonough
- Locust Grove
- Hampton
- Henry County

Cities

Henry County

*Projects with red labels are city- or county- owned roads

TOOLE
DESIGN

HENRY COUNTY
**TRANSPORTATION
SAFETY ACTION PLAN**
mobility and safety for all

Figure 1: Map of Priority Projects

The project team worked with the Henry County and city staff to identify the highest-ranking corridor within each jurisdiction to develop focused corridor studies. Each corridor study examined existing conditions, crash history, and recommended improvements. Each corridor study advances the top safety project within its jurisdiction as well as informs a comprehensive safety toolkit for similar roadways and projects throughout Henry County and its cities.

It is important to note that the corridor numbers assigned to each corridor are purely for identification purposes only and do not reflect a level of priority or severity. The five corridors studied are listed below in **Table 2**.

Table 2: Corridor Studies

Study	Jurisdiction	Corridor
Corridor 1	Henry County (unincorporated)	Willow Lane / Industrial Boulevard from Brookshire Circle to Old Industrial Boulevard
Corridor 2	City of Hampton	Richard Petty Boulevard / Woolsey Road from Bear Creek Boulevard to Perimeter Drive
Corridor 3	City of Stockbridge	Patrick Henry Parkway / Rock Quarry Road from Country Club Drive to Banks Road
Corridor 4	City of Locust Grove	Bill Gardner Parkway / Highway 42 S from Bandy Parkway to N Jackson Street
Corridor 5	City of McDonough	Jonesboro Street from Doris Street to Atlanta Street

Data Sources

To support the Henry County TSAP Corridor Studies, the project team relied upon the Descriptive Crash Analysis Report as well as the following data sources listed in **Table 3**.

Table 3: Data sources and consolidated data

Data Set or Design Guidance	Data Source
Crash Data	GDOT Numetric Crash Query application
Annual Average Daily Traffic (AADT)	GDOT Traffic Analysis & Data Application
Truck Traffic %	GDOT Traffic Analysis & Data Application
Functional Class	GDOT Functional Class Map
Demographic Class (Environmental Justice Model)	The Atlanta Regional Commission (ARC)
Americans with Disabilities Act (ADA) Compliance	Public Right-of-Way Accessibility Guide (PROWAG)
Traffic Control Devices Standards and Guidance	Manual on Uniform Traffic Control Devices (MUTCD)
High-Comfort Bicycle Facilities for All Ages & Abilities	American Association of State Highway and Transportation Officials (AASHTO) Guide for the Development of Bicycle Facilities
Turn Lanes	GDOT Regulations for Driveway and Encroachment Control Manual
Acceleration / Deceleration Lanes	
Traffic Signals	GDOT Traffic Signal Design Guidelines
Henry County Project Lists	2022 Henry County Comprehensive Transportation Plan (CTP) 2021 Henry County TSPLOST

Corridor 1: Willow Lane / Industrial Boulevard from Brookshire Circle to Old Industrial Boulevard

Henry County (Unincorporated)

The following section of this report provides details of Corridor 1's existing conditions, crash history, and recommended improvements. Crash data from 2019 to 2023 was used to analyze this corridor. This corridor was the highest-ranked local road in unincorporated Henry County for priority projects. Regardless of road ownership (state, county, or local), this segment ranks 5th overall for priority projects for Henry County on the 23 priority projects list.

Context

This corridor is named Willow Lane north of Hampton-McDonough (SR 20) and is named Industrial Boulevard south of SR 20, see **Figure 2**. The studied section of the roadway is 0.58 miles long and extends from Brookshire Circle to Old Industrial Boulevard. It is a two-lane undivided, suburban, local roadway with a posted speed limit of 35 miles per hour (mph). A sidewalk spans the south side of Willow Lane from Brookshire Circle to the Lowe's driveway and again from SR 20 to the Taco Bell driveway. There are no bicycle facilities present along this corridor. Pavement width varies from a minimum of 32' to a maximum of 70'. The roadway is straight for most of the corridor with a sharp horizontal curve on the south end. The adjacent land uses are mostly commercial – gas stations, restaurants, stores, and hotels – as well as some apartments and single-family homes. An interchange for Interstate 75 (I-75) is within a quarter of a mile from this corridor, particularly the intersection of Willow Lane / Industrial Boulevard and SR 20. The Average Annual Daily Traffic (AADT) was not made available for this corridor.

Current or Planned Projects

There is a current project under construction on this segment. From the 2022 Henry County Comprehensive Transportation Plan (CTP), there is a long-term sidewalk project (Project ID LM-134) planned on this corridor to install sidewalks along the west side of Willow Lane from SR 20 to Bridges Road. There is a midterm roadway capacity project (Project ID CTP-R06) planned to widen Willow Lane / Industrial Boulevard from SR 155 to Jodeco Road from two lanes to four lanes.

Note: Safety risks and benefits for existing projects or recently constructed projects cannot be addressed in this report.

Figure 2: Willow Lane / Industrial Boulevard Corridor Context

Crash History

A crash data analysis was performed for the Willow Lane / Industrial Boulevard corridor to understand the contributing factors and identify focus areas for countermeasures. From 2019 to 2023, 378 total crashes occurred along the 0.58-mile segment between Brookshire Circle and Old Industrial Boulevard. Over eighty percent (84%) of the crashes occurred at intersections, making intersection-related recommendations a focus of this evaluation. There was one crash involving a bicycle and four crashes involving a motorcycle, two of which were serious injury crashes. There was one crash involving a pedestrian, which was a serious injury crash.

Overall, there was 1 fatality (K), 6 severe injury crashes (A), and 21 crashes resulting in minor injuries (B).

Table 4 shows the summary of the crash data by collision manner for the Willow Lane / Industrial Boulevard corridor. **Table 5** shows the top five contributing factors as noted in the crash reports of crashes on Willow Lane / Industrial Boulevard corridor. **Table 6** summarizes the FSI crashes (7) that occurred on this corridor. Countermeasure recommendations are made based on the available crash data, such as collision manner and contributing factors,

with emphasis on locations along the corridor with FSI crashes. **Figure 3** shows the spatial distribution of crashes on the Willow Lane / Industrial Boulevard corridor.

Table 4: Willow Lane / Industrial Boulevard Crashes Collision Manner, if noted

Collision Manner	# of Crashes	# of FSI Crashes
Angle Crash	190	5
Rear End	131	--
Sideswipe – Same Direction	29	--
Head On	13	--
Single Vehicle	12	2
Sideswipe – Opposite Direction	3	--

Table 5: Willow Lane / Industrial Boulevard Top 5 Contributing Factors of All Crashes

Contributing Factors	# of Crashes
Failure to Yield	17
Changed Lanes Improperly	14
Disregard Stop Sign/Signal	13
Following Too Close	9
Other	6

Table 6: Willow Lane / Industrial Boulevard FSI Crashes Summary

Intersection	Intersection Type	Collision Manner	Contributing Factors
Brookshire Circle	Side Stop-Controlled	Not a Collision with Motor Vehicle (pedestrian crash)	**
Old Industrial Boulevard (N)	Side Stop-Controlled	Not a Collision with Motor Vehicle	Distracted
Shoppes Lane	Side Stop-Controlled	Angle Crash	**
		Angle Crash	**
Hampton-McDonough Road (SR 20)	Signalized	Angle Crash (motorcycle crash)	
		Angle Crash (fatality)	
		Angle Crash (motorcycle crash)	

Note: Crash reports refer to Old Industrial Boulevard as "Wal-Mart Rd".

**No contributing factors were listed for these crashes.

Figure 3: Crash map of Willow Lane / Industrial Boulevard corridor

Corridor Recommendations

Speed Management

Willow Lane varies from two to four lanes wide. The posted speed limit increases from 35 mph at Brookshire Circle to 45 mph at SR 20 which may encourage higher travel speeds. It is recommended to conduct a speed study to assess the posted speed limit.

Pedestrian and Bicycle Facilities

There is a continuous sidewalk on the south side of this corridor with the only gap near SR 20 along the KFC property. This existing sidewalk terminates before reaching Old Industrial Boulevard to the south. There are no sidewalks on the north side of this corridor except for about 350 feet south of SR 20. However, there is an observed desired path on the north side of the road from Old Industrial Boulevard to Brookshire Circle.

Existing sidewalks should be upgraded to meet ADA requirements and connected to provide a continuous path on at least one side of the road from the neighborhoods to the north to the commercial uses to the south. It is recommended that a shared-use path or wide sidewalk be installed to accommodate both pedestrians and cyclists. Additionally, curb extensions and median refuge islands should be implemented to shorten pedestrian crossing

distances and improve safety at intersections and select driveways. Detectable warning surfaces should be added to curb ramps at all pedestrian crossings. Existing curb ramps should be upgraded to meet ADA compliance. Lighting should be installed along pedestrian pathways to enhance visibility.

Intersection Recommendations

Observations were made at specific intersections along Willow Lane and Industrial Boulevard. These are described below.

Brookshire Circle

Brookshire Circle is a side stop-controlled intersection with Audubon Estates on the east side of Willow Lane and Brookshire Apartments on the west side.

Pedestrian Facilities

A serious injury crash involving a pedestrian occurred at this intersection, indicating the need for improvements to address safety risks for pedestrians. Corridor recommendations such as installing or upgrading curb ramps and installing lighting should be prioritized at this intersection. It is recommended to add a pedestrian crossing with Rectangular Rapid Flashing Beacons (RRFBs) across Willow Lane at this intersection, so pedestrians can safely access the existing sidewalk on the south side of Willow Lane. Curb extensions could be installed within the acceleration or deceleration lanes at this intersection to shorten the crossing distance and increase visibility of pedestrians.

Old Industrial Boulevard

Old Industrial Boulevard is a side stop-controlled intersection where most crashes are angle crashes or crashes caused by driver distractions. These crashes typically occur due to drivers failing to pay attention or misjudging traffic conditions.

Intersection Control & Evaluation

It is recommended that this intersection be further evaluated for an all-way stop control or signalization given the land use surrounding Old Industrial Boulevard and the traffic that it generates. Sight distance should be evaluated, and adjustments should be made, particularly for vehicles turning left onto Willow Lane / Industrial Boulevard heading northbound.

Shoppes Lane

Shoppes Lane is a side stop-controlled intersection where angle crashes and rear end crashes are frequent, especially during the afternoon and evening hours. The widening of the roadway on Willow Lane and the proximity to the SR 20 intersection contribute to multiple conflict points.

Intersection Control & Evaluation

It is recommended to limit movement to right in-right out (RIRO) and restrict left-turn movements from 2:00 PM to 9:00 PM to reduce conflict points during peak traffic hours.

Visibility

Since many of the crashes occur in low-light conditions, it is recommended to improve lighting at this intersection for better visibility.

Signing & Marking

It is recommended to re-stripe the stop bar to ensure better compliance.

Hampton – McDonough Road (SR 20)

This is a signalized intersection with proximity to I-75 making it a key part of the area's road network.

Pedestrian Facilities

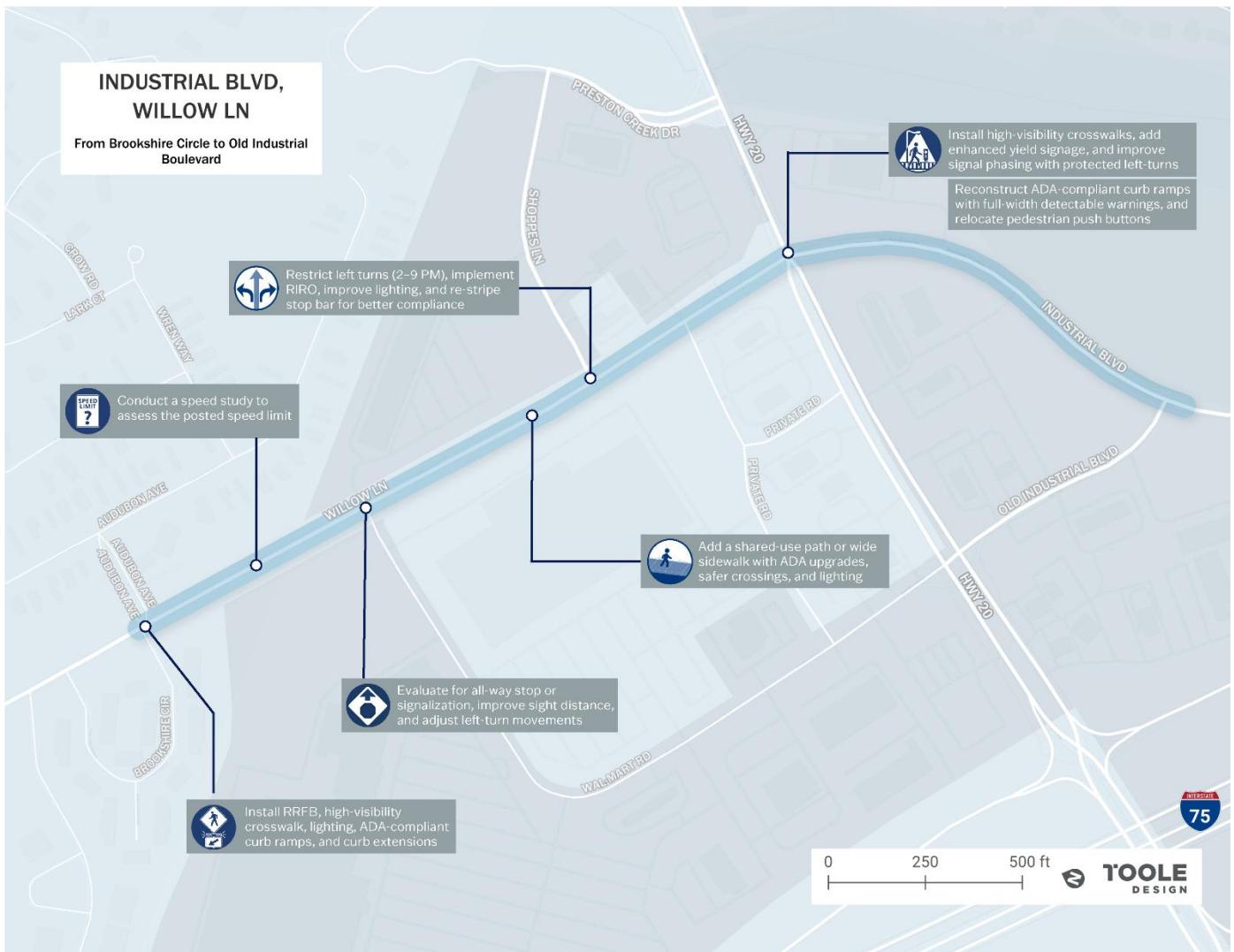
The north curb ramp landing at this intersection does not appear level, making it difficult for individuals with mobility impairments to navigate. A continuous accessible route is not provided due to missing or poor-quality sidewalks. There are no detectable warning surfaces in the pedestrian refuge area between the KFC and QT developments. The detectable warning surfaces at the curb ramps are too narrow and do not span the entire width of the ramp. Lastly, the push buttons for pedestrian crossings are not correctly oriented on all corners and lack proper clearance for accessibility.

It is recommended to reconstruct the curb ramps to meet ADA requirements, including slope and landing area with adequately sized detectable warning surfaces. Curb ramps should be oriented towards the crosswalk, perpendicular to travel lanes, instead of toward the middle of the intersection. The push buttons should be relocated to be ADA compliant following PROWAG specifications.

Signing & Marking

The crosswalk markings are faded and should be reapplied with fresh, high-visibility paint. Angle crashes, primarily caused by a failure to yield, are the most common type of crash at this intersection. Enhanced yield signage should be added at this intersection.

Signal Timing


Angle crashes, primarily caused by a failure to yield, are the most common type of crash at this intersection. Signal phasing should be improved, such as considering a protected left turn phase, to reduce left-turn conflicts and failure-to-yield incidents.

Recommendation Implementation

Table 7 below summarizes the list of corridor and intersection recommendations offered to reduce crashes for all modes and enhance safety along the Willow Lane / Industrial Boulevard corridor. Each recommendation has an estimated timeframe based on whether the recommendation is a Short- (1-3 years), Mid- (3-5) years, or Long- (5+ years) term project. **Figure 4** below shows some of the recommendations along the corridor.

Table 7: Recommended Countermeasures for Willow Lane / Industrial Boulevard Corridor

Time Frame	Location	Recommendation
Short (1-3 years)	Intersection	Install/refresh high-visibility crosswalks
	Segment	Re-evaluate speed limits to be appropriate for corridor
	Intersection	Reconfigure ramps to meet ADA standard
Medium (3-5 years)	Segment	Install additional lighting
	Segment	Install continuous sidewalk
	Intersection	Install RRFBs
	Intersection	Install curb extensions
	Intersection	Install median pedestrian refuge
Long (5+ years)	Segment	Install shared-use path

Figure 4: Recommendations along Willow Lane / Industrial Boulevard corridor

Corridor 2: Richard Petty Boulevard / Woolsey Road from Bear Creek Boulevard to Perimeter Drive

City of Hampton

The following section of this report provides details of Corridor 2's existing conditions, crash history, and recommended improvements. Crash data from 2019 to 2023 was used to analyze this corridor. This corridor was the highest-ranked local road in the City of Hampton for priority projects. Regardless of road ownership (state, county, or local), this segment ranks 7th overall for priority projects for Henry County on the 23 priority projects list.

Context

This corridor is Richard Petty Boulevard west of Bear Creek Boulevard (SR 3, US 19, US 41) and named Woolsey Road east of Bear Creek Boulevard, see **Figure 5**. Richard Petty Boulevard serves as a route for traffic traveling from Bear Creek Boulevard to the Atlanta Motor Speedway and nearby commercial developments and amenities along Woolsey Road. Lower Woolsey Road also provides access to the Speedway from Bear Creek Boulevard. The studied section of the roadway is 0.39 miles long and extends from Bear Creek Boulevard to Perimeter Drive. It is a five-lane undivided minor collector with a posted speed limit of 45 mph. There are two travel lanes in each direction and a two-way center turn lane.

The roadway design, five lanes, is likely to accommodate ingress and egress traffic associated with race days. There is no curb and gutter on this segment. The pavement width varies from 56 feet to 60 feet. The AADT for this corridor is 4,620 east of Bear Creek Boulevard and 730 west of Perimeter Drive.

Current or Planned Projects

From the 2022 CTP, there is a mid-term sidewalk project (Project ID LM-24) planned on this corridor to install sidewalks along both sides of Richard Petty Boulevard from Lower Woolsey Road to US 41. From Henry County's 2021 TSPLOST list there is a planned sidewalk project (Project ID 39) from Woolsey Road Downtown to Bear Creek Boulevard.

Note: Safety risks and benefits for existing projects or recently constructed projects cannot be addressed in this report.

Figure 5: Richard Petty Boulevard / Woolsey Road Corridor Context

Crash History

A crash data analysis was performed for the Richard Petty Boulevard / Woolsey Road corridor to understand the contributing factors and identify focus areas for countermeasures. From 2019 to 2023, 26 total crashes occurred along the 0.39-mile segment between Bear Creek Boulevard and Perimeter Drive. Fifty percent of the crashes occurred at night, demonstrating the need for additional lighting on this corridor. There were three crashes involving a motorcycle, one resulting in a fatality.

Overall, there was 1 fatality (K), 3 severe injury crashes (A), and 4 crashes resulting in minor injuries (B).

Table 8 shows the summary of the crash data by collision manner for the Richard Petty Boulevard / Woolsey Road corridor. **Table 9** shows the top six contributing factors as noted in the crash reports of crashes on Richard Petty Boulevard / Woolsey Road corridor. **Table 10** summarizes the FSI crashes (4) that occurred on this corridor. Countermeasure recommendations are made based on the available crash data, such as collision manner and contributing factors, with emphasis on locations along the corridor with FSI crashes. **Figure 6** shows the spatial distribution of crashes on the Richard Petty Boulevard / Woolsey Road corridor.

Table 8: Richard Petty Boulevard / Woolsey Road Crashes Collision Manner, if noted

Collision Manner	# of Crashes	# of FSI Crashes
Angle Crash	12	2
Rear End	6	--
Single Vehicle	5	2
Sideswipe – Same Direction	2	--
Sideswipe – Opposite Direction	1	--

Table 9: Richard Petty Boulevard / Woolsey Road Top 6 Contributing Factors of All Crashes

Contributing Factors	# of Crashes
Driver Lost Control	2
Failure to Yield	2
Following Too Close	1
Misjudged Clearance	1
Too Fast for Conditions	1
Under the Influence (U.I.)	1

Table 10: Richard Petty Boulevard / Woolsey Road FSI Crashes Summary

Two of the FSI crashes occurred at the intersection of Perimeter Drive at night. The other two FSI crashes occurred at the intersection of Bear Creek Boulevard during the day in April 2019. All FSI crashes either happened on Thursday or Friday.

Intersection	Intersection Type	Collision Manner	Contributing Factors
Bear Creek Boulevard (SR 3, US 19, US 41)	Signalized	Angle Crash	**
		Angle Crash	Failure to Yield; Not Visible (Object)
Perimeter Drive	Side Stop- Controlled	Not a Collision with Motor Vehicle; Single Vehicle (fatality; motorcycle crash)	Driver Lost Control
		Not a Collision with Motor Vehicle; Single Vehicle (motorcycle crash)	Too Fast for Conditions

Note: Perimeter Drive is also called Turnipseed Road and Gate G in crash reports.

**No contributing factors were listed for this crash.

Figure 6: Crash map of Richard Petty Boulevard / Woolsey Road corridor

Corridor Recommendations

Many crashes in this area have been attributed to high speeds and drivers losing control, with some crashes involving driving under the influence.

Signing & Marking

It is recommended to repave and re-stripe the road with raised pavement markings to create safer conditions for motorists.

Speed Management

It is recommended that the posted speed limit be lowered from 45 mph to 35 mph. It is recommended to add speed feedback signs and establish enforcement during non-event times.

Education & Enforcement

Strategies for high-traffic events, such as sobriety checkpoints, educational campaigns on drunk driving, and improved traffic management, should be implemented to help address common crashes on this corridor.

Visibility

Additionally, installing more lighting along the corridor is essential to improve visibility and overall safety.

Intersection Recommendations

Observations and recommendations were made at specific intersections along Richard Petty Boulevard / Woolsey Road, as described below.

Bear Creek Boulevard (US 19, US 41)

At this intersection, angle crashes are frequent and are primarily caused by drivers failing to yield the right of way or by obstructed visibility.

Visibility

To address these issues, it is recommended to increase lighting at this intersection to improve visibility.

Signing & Marking

Enhanced yield signage should be added at this intersection. Hardened centerlines can also help reduce left-turn angle and head-on crashes.

Signal Timing

Signal phasing and timing should be optimized, considering a protected left turn phase, to reduce left-turn conflicts and failure-to-yield crashes.

Perimeter Drive

This intersection is side stop-controlled with the stop bar placed approximately 30 feet back from the travel lane. Crashes at this intersection are single-vehicle crashes, including a fatal motorcycle crash caused by excessive speeds.

Signing & Marking

It is recommended to relocate the stop bar and stop sign to closer to the edge of travel lane. The stop bar should be placed at the desired stopping point and should be placed no more than 30 feet nor less than 4 feet from the nearest edge of the intersecting traveled way, according to guidance from the MUTCD. Stop bars should be placed to allow sufficient sight distance to all other approaches to an intersection.

Speed Management

It is recommended to reduce turning radii, such as by installing curb extensions. Speeds can also be reduced by narrowing travel lanes and reducing driveway widths.

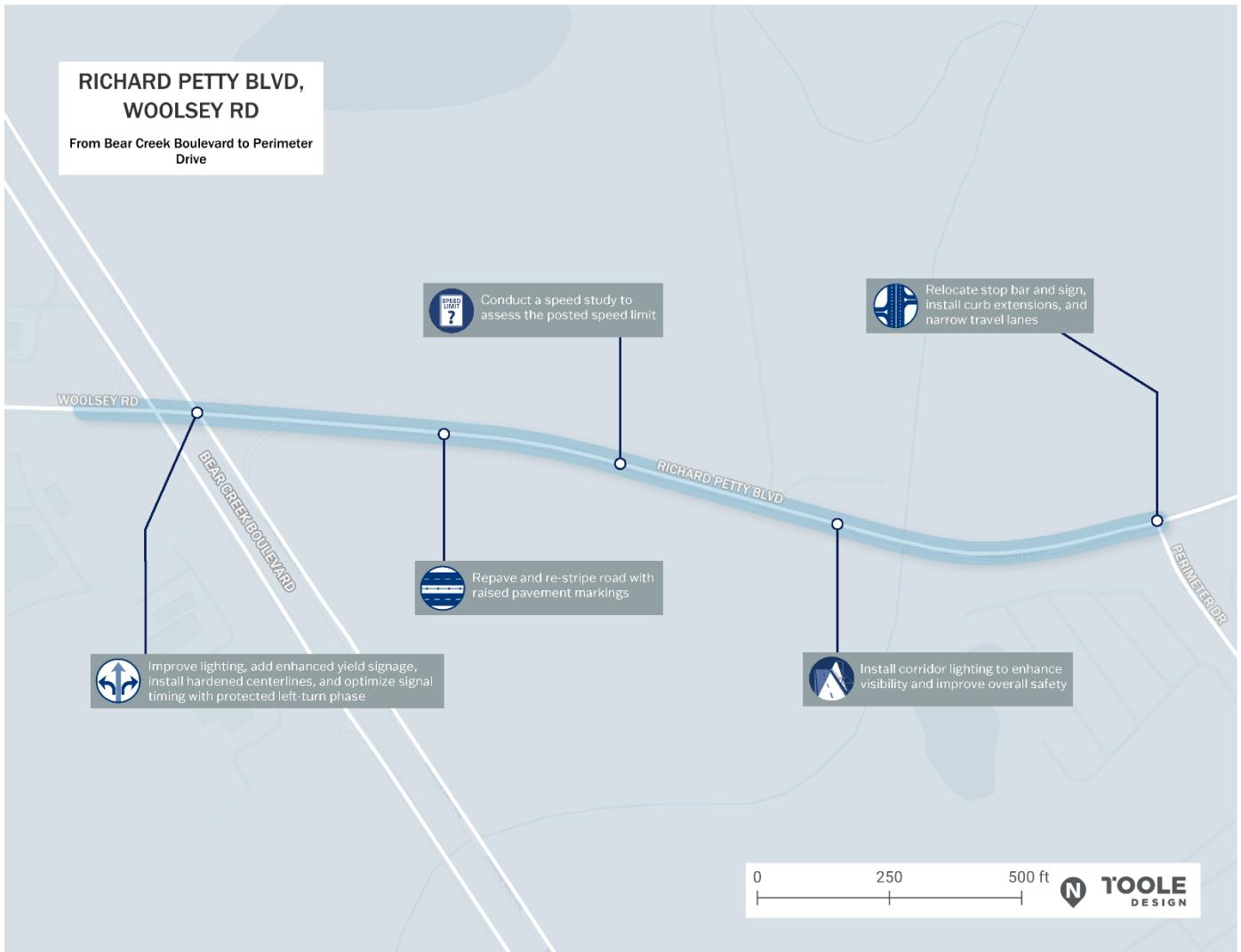

Recommendation Implementation

Table 11 below summarizes the list of corridor and intersection recommendations offered to reduce crashes for all modes and enhance safety along the Richard Petty Boulevard / Woolsey Road corridor. Each recommendation has an estimated timeframe based on whether the recommendation is a Short- (1-3 years), Mid- (3-5) years, or Long- (5+ years) term project. **Figure 7** below shows some of the recommendations along the corridor.

Table 11: Recommended Countermeasures for Richard Petty Boulevard / Woolsey Road Corridor

Time Frame	Location	Recommendation
Short (1-3 years)	Segment	Re-evaluate speed limits to be appropriate for corridor
	Segment	Install dynamic speed feedback signage
	Intersection	Evaluate signal timing and phasing

	Intersection	Restripe stop bar and relocate stop sign
	Intersection	Install hardened center line
Medium (3-5 years)	Segment	Resurface pavement
	Segment	Install raised pavement markings with restriping
	Segment	Install additional lighting
	Intersection	Reduce radii
	Segment	Narrow lanes

Figure 7: Recommendations along Richard Petty Boulevard / Woolsey Road corridor

Corridor 3: Patrick Henry Parkway / Rock Quarry Road from Country Club Drive to Banks Road

City of Stockbridge

The following section of this report provides details of Corridor 3's existing conditions, crash history, and recommended improvements. Crash data from 2019 to 2023 was used to analyze this corridor. This corridor was the highest-ranked local road in the City of Stockbridge for priority projects. Regardless of road ownership (state, county, or local), this segment ranks 8th overall for priority projects for Henry County on the 23 priority projects list.

Context

This corridor is named Rock Quarry Road north of Eagles Landing Parkway and named Patrick Henry Parkway south of Eagles Landing Parkway, see **Figure 8**. The studied section of roadway, 1.36 miles, between Country Club Drive and Banks Road is a two to eight lane roadway with a posted speed limit of 45 mph. It is classified as a local road south of Eagles Landing Parkway and a minor arterial north of Eagles Landing Parkway. There is a continuous sidewalk on both sides of the road from Country Club Drive to Hospital Drive. There are long stretches of sidewalk on the west side of the road but not a continuous sidewalk up to Banks Road. There is some sidewalk on the east side of the road near Banks Road. There is a designated bicycle route on the east side of the road at Country Club Drive which is a non-separated, minimum width, striped bike lane adjacent to right turn lanes. This bike lane terminates mid-block before reaching Kilearn Boulevard. Pavement width varies from a minimum of 25 feet to a maximum of 130 feet. The roadway is relatively straight for most of the corridor with a gradual horizontal curve after Hospital Drive. The local area is a mix of residential and commercial – including gas stations, restaurants, stores, and hotels – as well as apartments and single-family and multi-family homes. An interchange for I-75 is within an eighth of a mile from this corridor, particularly the intersection of Patrick Henry Parkway / Rock Quarry Road and Eagles Landing Parkway. The AADT for this corridor is 23,300.

Current or Planned Projects

From the 2022 CTP, there is a major capacity adding project (Project ID CTP-R34) planned to widen Patrick Henry Parkway from Jodeco Road to Eagles Landing Parkway from two to four lanes. There is a short-term roadway capacity project (Project ID P-07, GDOT PI 15090) planned to widen Rock Quarry Road from Eagles Landing Parkway to SR 138 from two to four lanes. There is a long-term sidewalk project (Project ID LM-72) planned on this corridor to install sidewalks on both sides of Patrick Henry Parkway from Country Club Drive to Jodeco Road. There is a long-term sidewalk project (Project ID LM-76) planned on this corridor to install sidewalks on both sides of Rock Quarry Road from Red Oak Road to Hospital Drive. There is an aspirational intersection project (Project ID CTP-IS36) planned for Patrick Henry Parkway at Country Club Drive. From Henry County's 2021 TSPLOST list there is funding allocated for the Rock Quarry Rd Widening project (Project ID 6).

Note: Safety risks and benefits for existing projects or recently constructed projects cannot be addressed in this report.

Figure 8: Patrick Henry Parkway / Rock Quarry Road Corridor Context

Crash History

A crash data analysis was performed for the Patrick Henry Parkway / Rock Quarry Road corridor to understand the contributing factors and identify focus areas for countermeasures. From 2019 to 2023, 311 total crashes occurred along the 1.36-mile segment between Country Club Drive and Banks Road. A majority (69%) of the crashes occurred at intersections, making intersection-related recommendations a focus of this evaluation. There were two crashes involving a motorcycle, one of which was a FSI crash. There were three crashes involving a pedestrian with one resulting in a fatality.

Overall, there were 2 fatalities (K), 3 severe injury crashes (A), and 16 crashes resulting in minor injuries (B).

Table 12 shows the summary of the crash data by collision manner for the Patrick Henry Parkway / Rock Quarry Road corridor. **Table 13** shows the top six contributing factors as noted in the crash reports of crashes on Patrick Henry Parkway / Rock Quarry Road corridor. **Table 14** summarizes the FSI crashes (5) that occurred on this corridor. Countermeasure recommendations are made based on the available crash data, such as collision manner and contributing factors, with emphasis on locations along the corridor with FSI crashes. **Figure 9** shows the spatial distribution of crashes on the Patrick Henry Parkway / Rock Quarry Road corridor.

Table 12: Patrick Henry Parkway / Rock Quarry Road Crashes Collision Manner, if noted

Collision Manner	# of Crashes	# of FSI Crashes
Rear End	160	--
Angle Crash	83	1
Sideswipe – Same Direction	37	--
Single Vehicle	18	2
Head On	7	2
Sideswipe – Opposite Direction	6	--

Table 13: Patrick Henry Parkway / Rock Quarry Road Top 6 Contributing Factors of All Crashes

Contributing Factors	# of Crashes
Following Too Close	19
Failure to Yield	8
Other	5
Changed Lanes Improperly	5
Reaction to Object or Animal	4
Driver Lost Control	4

Table 14: Patrick Henry Parkway / Rock Quarry Road FSI Crashes Summary

All FSI crashes occurred in dark lighting conditions at night.

Intersection	Intersection Type	Collision Manner	Contributing Factors
Eagles Landing Parkway	Signalized	Angle Crash (motorcycle crash)	Loose Material on Surface
Hospital Drive	Side Stop- Controlled	Not a Collision with Motor Vehicle; Single Vehicle (fatality)	Driver Lost Control
N Park Trail	Side Stop- Controlled	Head On	**
Windsong Drive	Side Stop- Controlled	Head On	**
Carrington Ridge / Banks Road	Signalized	Not a Collision with Motor Vehicle; Single Vehicle (fatality); pedestrian crash)	**

**No contributing factors were listed for this crash.

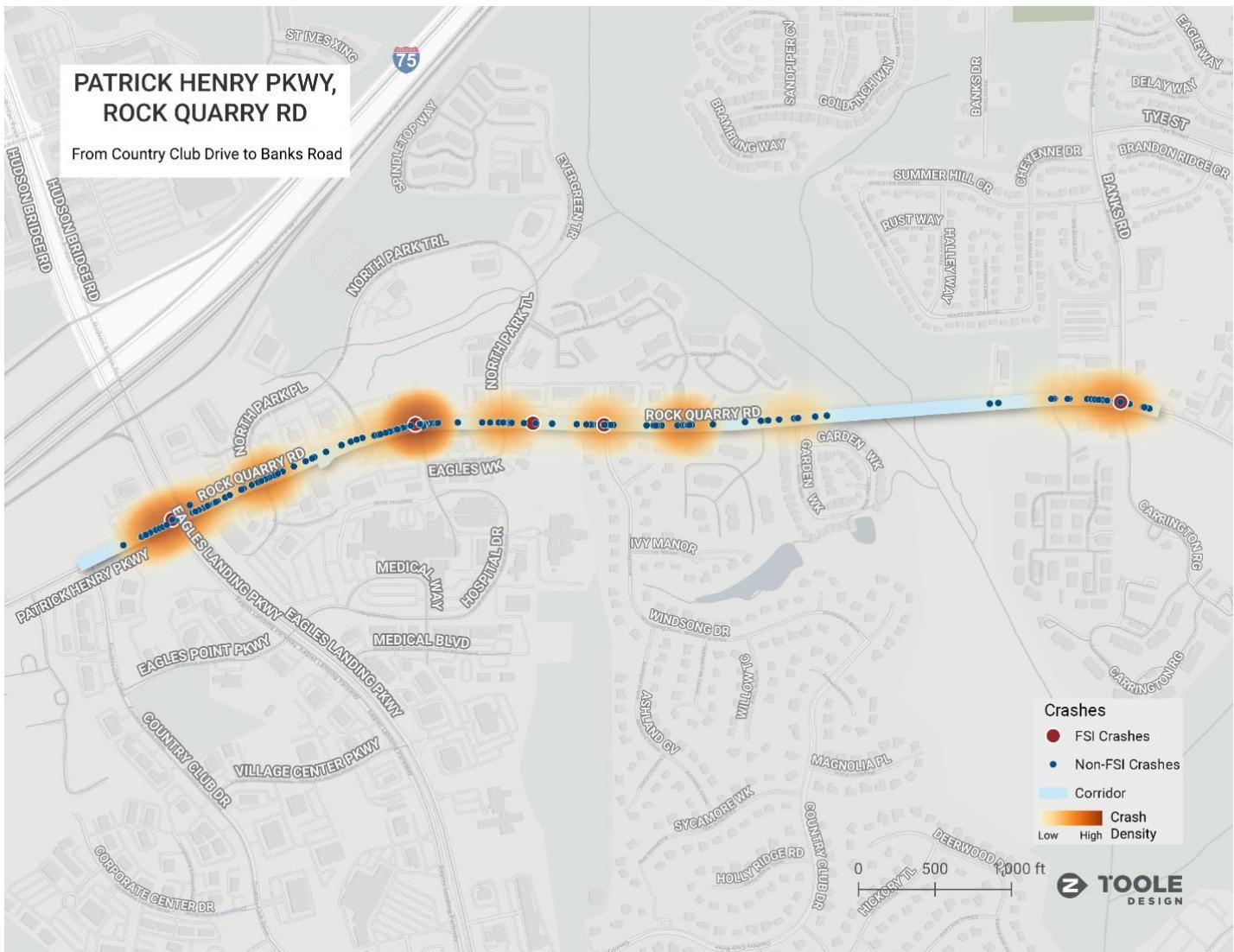


Figure 9: Crash map of Patrick Henry Parkway / Rock Quarry Road corridor

Corridor Recommendations

The corridor recommendations are broken down into two segments, based on roadway characteristics such as number of travel lanes or presence of pedestrian or bicycle facilities:

- **Segment 1:** Country Club Drive to Hospital Drive (0.44 miles)
- **Segment 2:** Hospital Drive to Banks Road / Carrington Ridge (0.87 miles)

Segment 1: Country Club Drive to Hospital Drive

The corridor from Country Club Drive to Hospital Drive, which is currently designated as a bike route, lacks the necessary infrastructure to effectively delineate and protect cyclists. As Rock Quarry Road approaches Eagle Landing Parkway, the road widens to five lanes between Hospital Drive and N Park Drive, expanding to eight lanes at the intersection with Eagle Landing Parkway. Similarly, as Patrick Henry Parkway approaches Eagle Landing Parkway, the road widens to seven lanes. Throughout the corridor, additional turn lanes are added at driveways and intersections. However, these additional lanes appear disproportionate to the traffic demand as indicated by the segment's AADT, and therefore result in wider intersections, longer pedestrian crossing distances, and greater vehicle speeds.

Road Configuration

It is recommended that a corridor study be conducted to assess the feasibility of a road diet, as the current traffic volumes do not justify the need for four to eight lanes. The existing right turn lanes should be evaluated for removal to reduce the road's overall width and improve pedestrian safety by shortening crossing distances.

Pedestrian & Bicycle Facilities

Additionally, the bike route designation should be suspended until adjustments are made to design the bicycle facility to a high-comfort facility for all ages and abilities. This may include implementing physical separation for bike lanes, narrowing vehicle lanes to reduce travel speeds, or reducing the speed limit, addressing conflict points like at turn lanes, and introducing traffic calming measures to better support both cyclists and pedestrians along the corridor. The bicycle facility should be extended to a logical terminus at an intersection, so cyclists can transition to share the road or ride on a shared-use path. A long-term recommendation to accommodate cyclists and pedestrians on this corridor would be to upgrade the sidewalk to a shared-use path.

Segment 2: Hospital Drive to Banks Road/ Carrington Ridge

Between Hospital Drive and Banks Road, a significant number of crashes are rear end or angle collisions. The corridor currently features two travel lanes, with additional right turn lanes at driveways and intersections. At many of the side streets and driveways there is additional pavement that appears to be used as acceleration and deceleration lanes for traffic entering and exiting Rock Quarry Road. This extra pavement may be a risk as drivers do not have adequate space to slow down or speed up which may be a cause of the rear end and angle crashes present in this segment. The extra pavement and right turn lanes increase the crossing distance and create unsafe conditions for pedestrians.

Road Configuration

It is recommended that a detailed study be conducted to assess the feasibility of a road diet. It is recommended to reduce the overall roadway width to discourage excessive speeds. The turn lanes can be replaced with curb extensions at intersections and driveways to decrease the turning radii, slow vehicle speeds, and reduce crossing distances for people walking. Extra pavement should be removed or striped with hatching. Guidance for traffic volume thresholds and design or removal of acceleration or deceleration lanes as well as right turn lanes and left turn lanes can be found in GDOT's Regulations for Driveway and Encroachment Control Manual.

Speed Management

The speed limit should be reduced from 45 mph to 35 mph to encourage safer driving speeds where the corridor transitions to two lanes with residential uses. It is recommended to install speed feedback signs to discourage speeding.

Pedestrian & Bicycle Facilities

The existing bike facility in Segment 1 should be extended to a logical terminus at an intersection, so cyclists can transition to share the road or ride on a shared-use path. Sidewalk gaps should be filled in on the west side of the road to create a connected, continuous, accessible pedestrian pathway along the corridor. A long-term recommendation to accommodate cyclists and pedestrians on this corridor would be to upgrade the sidewalk to a shared-use path.

Visibility

It is recommended that additional lighting be installed along sidewalks and at intersections for better visibility.

Intersection Recommendations

The following observations were made at specific intersections along Patrick Henry Parkway / Rock Quarry Road.

Eagles Landing Parkway

The intersection of Eagles Landing Parkway and Patrick Henry Parkway experiences a high frequency of rear end and angle crashes, likely caused by drivers following too closely. The road widens significantly approaching the intersection: Rock Quarry Road widens from five lanes to eight lanes at the intersection with Eagles Landing Parkway and Patrick Henry Parkway widens to seven lanes before reaching Eagles Landing Parkway. The area is adjacent to I-75 and accommodates Interstate access.

Additionally, Rock Quarry Road is identified as having a bike route that crosses into Patrick Henry Parkway and connects to a bike route along Eagles Landing Parkway. However, the current infrastructure lacks proper delineation and protection for cyclist, posing significant safety risks to cyclists navigating this busy area.

Pedestrian & Bicycle Facilities

It is recommended that the bicycle route designation be temporarily removed until substantial improvements are made to the surrounding corridors and intersections. If the designation is to be kept, the bike route should be redesigned to include protected bike lanes with clear lane markings or physical barriers to separate cyclists from high-speed vehicular traffic. Dedicated bike signals or bike boxes should be implemented to ensure cyclists have a safe and clear path through the intersection. It is also recommended to upgrade curb ramps and sidewalks to meet ADA standards for pedestrian accessibility and comfort.

Signing & Marking

Regardless of other improvements, it is recommended to refresh high-visibility crosswalks and lane markings, particularly the dashed lines through the intersection to clearly delineate turning movements and reduce angle crashes.

Signal Timing

Signal phasing and timing should be optimized, such as appropriately timed yellow change intervals, to reduce the frequent rear end and angle crashes at this intersection. To additionally reduce angle crashes, the dual right turn lanes on Rock Quarry Road should be studied for dedicated signalization or No Turn on Red. All dual left turn lanes should be adequately timed to reduce angle crashes. Signal heads should have backplates and reflective taping around the edges for additional visibility. Additional or upgraded signal heads may be warranted for the number of lanes and movements occurring at this intersection. Refer to GDOT's Traffic Signal Design Guidelines for more information.

Hospital Drive / N Park Trail / Windsong Drive

At these intersections, the majority of crashes are rear end and angle collisions, typically resulting from drivers following too closely or failing to yield.

Intersection Control & Evaluation

A detailed study should be conducted to evaluate the potential conversion of these intersections to signalized or roundabout configurations, replacing the current a side stop- controlled setup. This change would improve traffic flow and reduce the frequency of collisions caused by abrupt stops or failure to yield. In the interim, several smaller-scale measures should be considered, like implementing curb extensions to reduce turning radii.

Visibility

Regardless of whether other improvements are made, upgraded lighting should be installed at these intersections to enhance visibility.

Pedestrian & Bicycle Facilities

Additionally, curb ramps, pedestrian push buttons, and continuous ADA-compliant sidewalks should be implemented as necessary to ensure seamless connections to existing infrastructure from nearby developments. The sidewalk on the east side of the road should be extended to this intersection. A pedestrian crossing with RRFBs should be added to cross pedestrians to the sidewalk on the west side of the road. In the short term, the existing bike lane should be extended to the Hospital Drive intersection and Share the Road signage and sharrows can be added until an improved on-street bicycle facility or shared-use path can be built.

Carrington Ridge / Banks Road

At the Carrington Ridge / Banks Road intersection, the majority of crashes are rear end and angle collisions, with one fatal crash involving a pedestrian. These crashes may be related to factors such as driver speeds, inadequate lighting conditions, and possibly improper signal timing.

Signing & Marking

It is recommended to reapply fresh, high-visibility paint to all crosswalks, stop bars and lane lines. The location of the stop bars should be evaluated to accommodate all turn movements within this intersection. The current location of the stop bars may be a contributing factor for collisions.

Visibility

Additionally, lighting should be installed or upgraded to enhance visibility.

Signal Timing

The signal timing and phasing should be evaluated as improper signal timing may be contributing to rear end crashes.

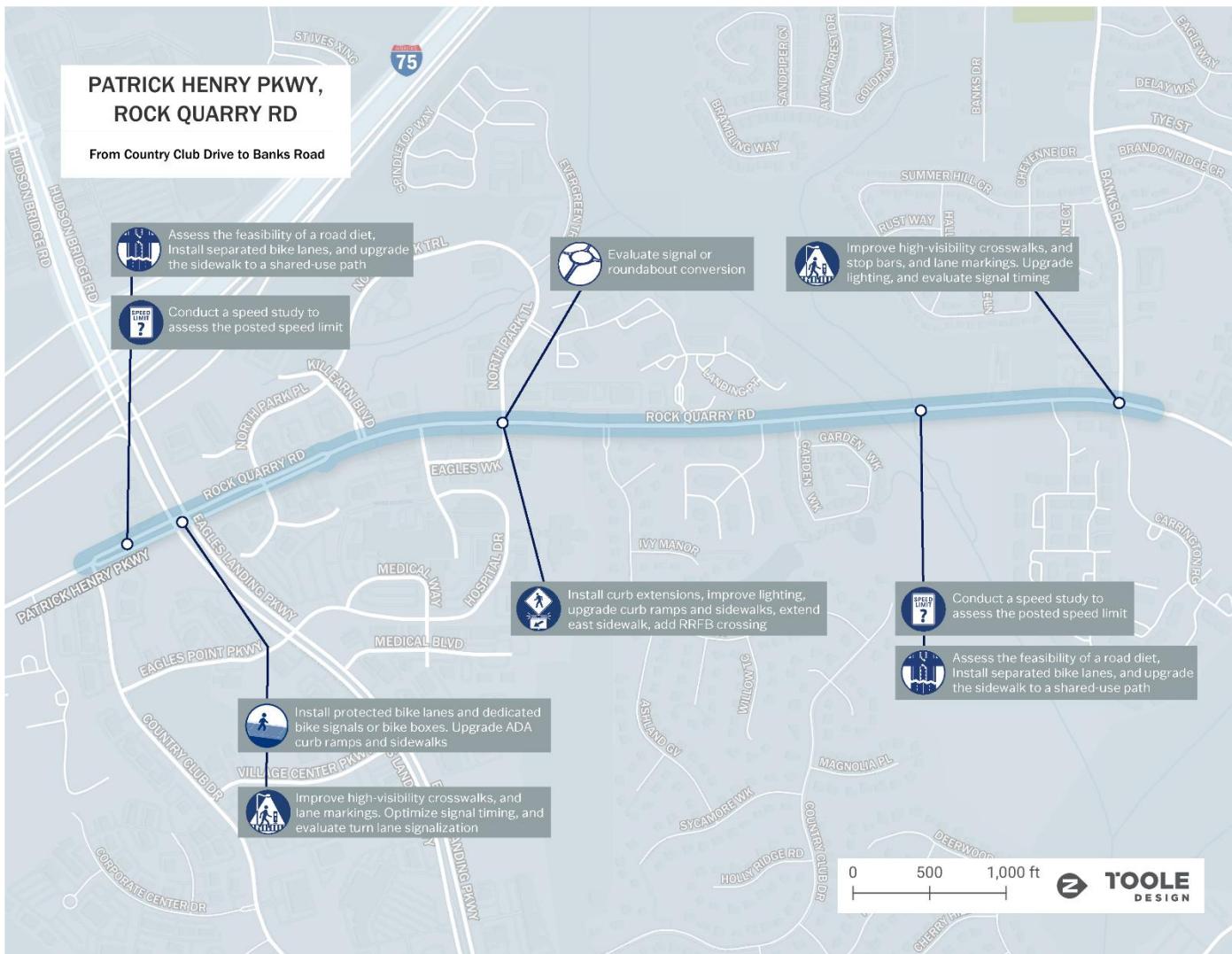

Recommendation Implementation

Table 15 below summarizes the list of corridor and intersection recommendations offered to reduce crashes for all modes and enhance safety along the Patrick Henry Parkway / Rock Quarry Road corridor. Each recommendation has an estimated timeframe based on whether the recommendation is a Short- (1-3 years), Mid- (3-5) years, or Long- (5+ years) term project. **Figure 10** below shows some of the recommendations along the corridor.

Table 15: Recommended Countermeasures for Patrick Henry Parkway / Rock Quarry Road Corridor

Time Frame	Location	Recommendation
Short (1-3 years)	Segment	Re-evaluate speed limits to be appropriate for corridor
	Segment	Install dynamic speed feedback signage
	Intersection	Evaluate signal timing and phasing – appropriately timed yellow change intervals and protected left phases
	Intersection	Install backplates and reflective taping on signal heads
Medium (3-5 years)	Intersection	Signalize right turns or implement No Turn on Red
	Segment	Study road for road diet
	Intersection	Conduct intersection control evaluation – signalization, roundabout
	Segment	Removal or modification of right turn lanes
	Intersection	Reduce curb radii with curb extensions
	Segment	Install buffered bike lanes
	Intersection	Reconfigure ramps to meet ADA standard
	Segment	Install additional lighting
	Segment	Install continuous sidewalk

Intersection		Install crossing with RRFBs
Long Segment	(5+ years)	Install shared-use path

Figure 10: Recommendations along Patrick Henry Parkway / Rock Quarry Road corridor

Corridor 4: Bill Gardner Parkway / Highway 42 South from Bandy Parkway to North Jackson Street

City of Locust Grove

The following section of this report provides details of Corridor 4's existing conditions, crash history, and recommended improvements. Crash data from 2019 to 2023 was used to analyze this corridor. This corridor was the highest-ranked local road in the City of Locust Grove for priority projects. Regardless of road ownership (state, county, or local), this segment ranks 13th overall for priority projects for Henry County on the 23 priority projects list.

Context

This studied section of roadway, 1.53 miles, between Bandy Parkway and North Jackson Street is a two to five lane, minor arterial with a posted speed limit of 35 mph of Bill Gardner Parkway and 35 to 45 mph on Highway 42 South (SR 42 / US 23), see **Figure 11**. This segment includes an interchange with I-75. The City of Locust Grove A recently constructed project from I-75 to Tanger Boulevard includes a landscaped or stamped concrete median, repaving, new sidewalk and curb ramps, and signal upgrades. A recently completed project from Bill Gardner Parkway to before Peeksville Road on Highway 42 South includes repaving, restriping, rumble strips, sidewalk and drainage improvements. The AADT for this corridor is 21,800 between I-75 and Highway 42 South and ranges from 17,700 to 24,500 on Highway 42 South with 6-8% truck traffic.

Current or Planned Projects

From the 2022 CTP, there is a major capacity adding project (Project ID CTP-R03) planned to widen Highway 42 from Bill Gardner Parkway to Grove Road from two to four lanes and project (Project ID CTP-R05) planned to widen Highway 42 from SR 155 to Bill Gardner Parkway from two to four lanes. There is a short-term roadway capacity project (Project ID P-02) planned to widen Bill Gardner Parkway from SR 155 to I-75 Southbound Ramps from two to four lanes. There is a mid-term intersection project (Project ID CTP-IS29) planned at Bill Gardner Parkway and Tanger Boulevard, which the City of Locust Grove is working on in partnership with GDOT. There is a long-term intersection project (Project ID CTP-IC21) planned at US 23 and Bill Gardner Parkway.

There is an aspirational trail project (Project ID LM-194) planned to construct a sidepath along Bill Gardner Parkway from SR 155 to US 23. There is an aspirational trail project (Project ID LM-188) planned to construct a sidepath along SR 42 from SR 155 to Locust Grove Recreation Center. From Henry County's 2021 TSPLOST list there is funding allocated for Bill Gardner Parkway from I-75 to Strong Rock Parkway (Project ID 2). There is funding allocated for a project on Highway 42 from Colvin Road to MLK Jr Boulevard (Project ID 16, Highway 42 Congestion Relief Project). Highway 42 is also on the citywide resurfacing list as a targeted area and higher priority street.

Note: Safety risks and benefits for existing projects or recently constructed projects cannot be addressed in this report.

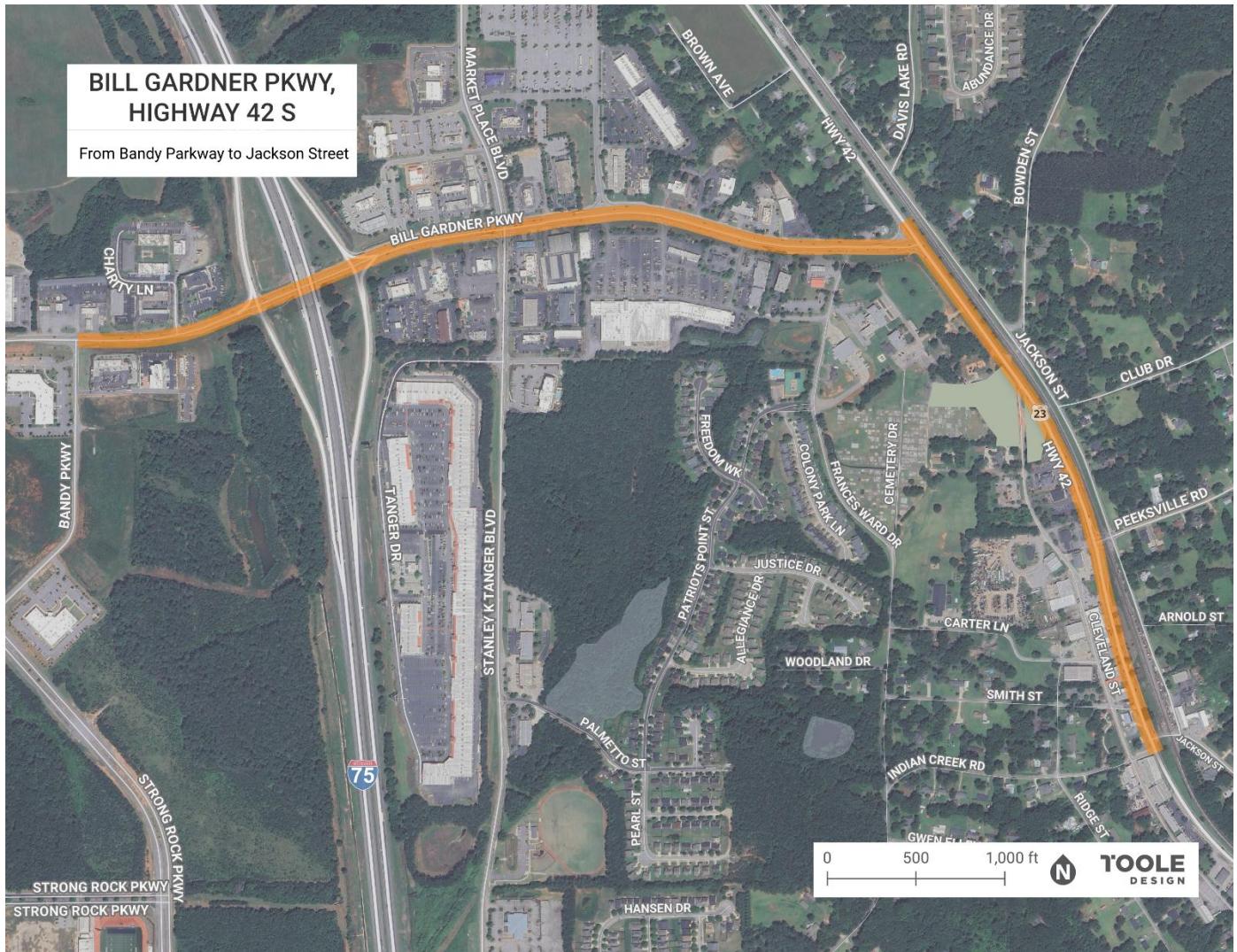


Figure 11: Bill Gardner Parkway / Highway 42 South Corridor Context

Crash History

A crash data analysis was performed for the Bill Gardner Parkway / Highway 42 South corridor to understand the contributing factors and identify focus areas for countermeasures. From 2019 to 2023, 1,203 total crashes occurred on the 1.72-mile segment between Bandy Parkway and North Jackson Street. There was one crash involving a bicycle which was a FSI crash and six crashes involving a motorcycle. There was one crash involving a pedestrian, which was a FSI crash.

Overall, there were no fatalities (K), 4 severe injury crashes (A), and 30 crashes resulting in minor injuries (B).

Table 16 shows the summary of the crash data by collision manner for the Bill Gardner Parkway / Highway 42 South corridor. **Table 17** shows the top five contributing factors as noted in the crash reports of crashes on Bill Gardner Parkway / Highway 42 South corridor. **Table 18** summarizes the FSI crashes (4) that occurred on this corridor. Countermeasure recommendations are made based on the available crash data, such as collision manner and contributing factors, with emphasis on locations along the corridor with FSI crashes. **Figure 12** shows the spatial distribution of crashes on the Bill Gardner Parkway / Highway 42 South corridor.

Table 16: Bill Gardner Parkway / Highway 42 South Crashes Collision Manner, if noted

Collision Manner	# of Crashes	# of FSI Crashes
Rear End	516	1
Angle Crash	436	3
Sideswipe – Same Direction	174	--
Single Vehicle	32	--
Head On	26	--
Sideswipe – Opposite Direction	19	--

Table 17: Bill Gardner Parkway / Highway 42 South Top 5 Contributing Factors of All Crashes

Contributing Factors	# of Crashes
Failure to Yield	43
Following Too Close	40
Changed Lanes Improperly	26
Improper Turn	17
Other	14

Table 18: Bill Gardner Parkway / Highway 42 South FSI Crashes Summary

Intersection	Intersection Type	Collision Manner	Contributing Factors
Charity Lane	Side Stop- Controlled	Angle Crash (pedestrian crash)	**
Tanger Boulevard	Signalized	Angle Crash (bicycle crash)	**
Highway 42	Signalized	Angle Crash	
		Rear End	**

**No contributing factors were listed for this crash.

Figure 12: Crash map of Bill Gardner Parkway / Highway 42 South corridor

Corridor Recommendations

The corridor recommendations are broken down into two segments, based on roadway characteristics such as number of travel lanes, development patterns or land uses, or presence of pedestrian or bicycle facilities:

- Segment 1: Bandy Parkway to Highway 42 South (0.93 miles)
- Segment 2: Highway 42 South to North Jackson Street (0.60 miles)

Segment 1: Bandy Parkway to Highway 42 South

This segment has large commercial sites such as a Walmart, Ingles, and the Tanger Outlets. There is a recently constructed project with improvements to this corridor between I-75 and Tanger Boulevard. Most crashes along this corridor segment are rear end and angle type collisions, with angle crashes accounting for three FSI crashes observed in this area.

Consider extending improvements, such as a raised median instead of a two-way left turn lane, and a sidewalk set back from the edge of the roadway, towards Highway 42 S.

Signing & Marking

It is recommended to repave from I-75 to Bandy Parkway and restripe the road with wider edge lines.

Intersection Control Evaluation

This segment of Bill Gardner Parkway could also be studied for restricted crossing U-turns (RCUTs) or median U-turns (MIT) to help reduce left turn conflicts and angle crashes, like at the Walmart Supercenter driveway. Side streets should be evaluated for different intersection control options such as signals or roundabouts.

Segment 2: Highway 42 South to North Jackson Street

This segment of Highway 42 South is less developed due to its proximity to the railroad. It serves as the entry way to the historic district of Locus Grove and the main street in downtown. Cleveland Street and Jackson Street run parallel to this corridor. A recently completed project has made improvements to this stretch, extending approximately 1,600 feet south of the Highway 42 South intersection, which includes countermeasures such as rumble strips. The current speed limit is 45 mph, which reduces to 35 mph as drivers enter the downtown area.

Speed Management

It is recommended that the speed limit be reduced from 45 mph to 40 mph between Bill Gardner Parkway and Cleveland Street, and further lowered to 35 mph from Cleveland Street to Peeksville Road. Further, in the downtown area, speeds should be reduced to 25 mph between Peeksville Road and Jackson Street. This is a typical speed for downtown areas and will be safer for pedestrians. This will help transition traffic to slower speeds. Speed feedback signs should be considered to encourage compliance with these lower speed limits. It is recommended that lane widths narrow as speed limits decrease and as the road transitions into downtown to give visual cues to drivers that the speed limit and land context is changing. Another recommendation to help create a gateway into downtown Locust Grove while slowing down speeds is to add roundabouts at each end of the downtown area like at Cleveland Street and N Jackson Street. Adding traffic calming measures, like speed cushions or raised crosswalks, on side streets in this segment can help reinforce slower speeds heading into downtown.

Pedestrian and Bicycle Facilities

It is recommended to implement thoughtful streetscaping leading into downtown to enhance the transition to a slower, more pedestrian-friendly street experience. Streetscaping typically includes ADA pedestrian facility upgrades, sidewalk construction and amenities such as street trees, pedestrian-scale lighting, and an amenity zone for benches, litter receptacles, bike racks, and additional buffered landscape or hardscape areas like brickwork. The primary goal of a streetscape project is to improve pedestrian safety. Well-designed streetscapes are economic assets where attractive, functional streetscapes encourage visitors to spend more time and money at local businesses, generating a positive economic impact.

It is recommended to install a shared-use path or separated bicycle facilities to connect the Locust Grove Recreation Center to the downtown area. Streets that accommodate all users facilitate social interaction and create opportunities for people to engage with their communities. Attractive and safe streetscapes encourage a vibrant street life, promote healthy and active lifestyles, and create a sense of civic pride and place.

Intersection Recommendations

The following observations were made at specific intersections along Bill Gardner Parkway / Highway 42 South.

Charity Lane

This intersection is a driveway to the Shell gas station. In 2021, there was a severe injury angle crash at this driveway involving a pedestrian. No pedestrian facilities are present along this corridor but there is evidence that pedestrian users are present indicated by a desire path linking the Comfort Suites development to the Shell gas station.

Intersection Improvements

Drainage structures along this corridor and intersection should be repaired and improved to function as intended. It is recommended that Charity Lane should be repaved.

Intersection Control & Evaluation

It is recommended to add a stop sign and stop bar here for the driveway approach. Access management should be considered since there are multiple driveways close together and near the I-75 interchange which may contribute to crashes due to drivers misjudging gaps in traffic.

Pedestrian Facilities

It is recommended to create an ADA accessible route where the desire path is through an inter-parcel pedestrian connection.

Visibility

It is recommended that lighting be enhanced at this intersection.

I-75 S / I-75 N

These signalized intersections are currently served by a pedestrian path extending west along the north side of Bill Gardner Parkway, connecting to pedestrian island medians and crosswalks. However, the western crosswalk on I-75 S directs pedestrians onto an exposed shoulder.

Visibility

It is recommended to install lighting at both intersections to improve pedestrian visibility, especially for pedestrians.

Pedestrian & Bicycle Facilities

Future considerations should focus on improving connectivity between the areas west and east of I-75, potentially through Bill Gardner Parkway or an alternative corridor, and may include a shared-use path or tunnels under the highway to protect vulnerable users from high-speed traffic. Coordination and partnership with GDOT is recommended for any potential improvements at the interchange.

Market Place Boulevard / Tanger Boulevard

This signalized intersection has primarily experienced angle and sideswipe-same direction crashes, with a notable severe injury angle crash involving a bicycle in 2021 and another severe injury angle crash in 2023 involving elderly drivers. Both crashes occurred during daylight hours. The intersection was repaved in 2024. The current configuration includes two northbound lanes on Tanger Boulevard: one designated for left turns only and the other allowing right turns, left turns, and through movements. Several crashes at this location have been attributed to improper lane changes, potentially due to confusion caused by the current lane assignments.

Intersection Control & Evaluation

It is recommended to reconfigure the rightmost lane to be a dedicated through and right turn lane, limiting left turns to the left lane only. A traffic study should be conducted to determine if additional lanes are needed at this intersection or reconfiguration of existing lanes based on volumes and turn counts is adequate.

Signal Timing

It is recommended to conduct a thorough evaluation and adjustment of the signal timing at this intersection to optimize traffic flow, reduce congestion, and minimize the risk of collisions, particularly during peak hours.

Pedestrian Facilities

It is recommended to replace damaged sidewalks, curbs, and curb ramps with significant cracking at this intersection.

Walmart Supercenter East Access Drive

This is a stop-controlled intersection with Bill Gardner Parkway, where the pavement width is approximately 90 feet. The absence of a median along Bill Gardner Parkway increases the risk of unsafe left-turns at this intersection. This intersection should be studied for alternative intersection controls or restrictions like right in right out (RIRO) only to address turning conflicts and angle crashes. There is also an acceleration lane exiting this driveway that may be a cause for crashes, so realigning the right turn lane for better sight distance and visibility may help. An additional benefit would be a shorter crossing distance for pedestrians.

Frances Ward Drive

This is a stop-controlled intersection with a history of primarily angle crashes.

It is recommended to reconfigure and update the sidewalks and curb ramps to meet ADA standards. With its proximity to the Highway 42 intersection, the angle crashes may be caused due to left turn conflicts. This intersection should be studied for alternative intersection control such as RIRO.

Bill Gardner Parkway / Highway 42

This is a signalized intersection. Most crashes at this intersection were rear end crashes. There was a severe injury rear end crash at this intersection in 2019.

Intersection Control & Evaluation

It is recommended that this intersection be studied for a multi-lane roundabout for traffic flow and a safer pedestrian experience. In addition, it is recommended that speeds begin to slow down from 45 mph to 40 miles at the intersection to help with drivers being able to come to a stop before without hitting each other. The need and alignment of the right turn lanes and slip lanes should be studied as these may be a cause for the rear end crashes as vehicles are not prepared to stop and treat this as a free flow and not yield condition.

Pedestrian Facilities

It is recommended to remark all crosswalks as high-visibility crosswalk, routinely clear debris from accessible pathways, add curb ramps to pedestrian crossing islands, and implement other necessary upgrades to ensure the intersection is fully ADA compliant.

Peeksville Road

This signalized intersection, which includes a railroad crossing, has a history of rear end crashes. The sidewalk on the east side of the road ends at this intersection, so there is no crosswalk across the eastern leg of this intersection.

Intersection Control & Evaluation

It is recommended to study the intersection for potential improvements in signal timing and turn lane storage. An additional railroad crossing should be considered to allow for more vehicle storage space on either side of the railroad like there is a N Jackson Street. This crossing could be removed from the network and vehicles could use Jackson Street to access the new crossing.

Pedestrian Facilities

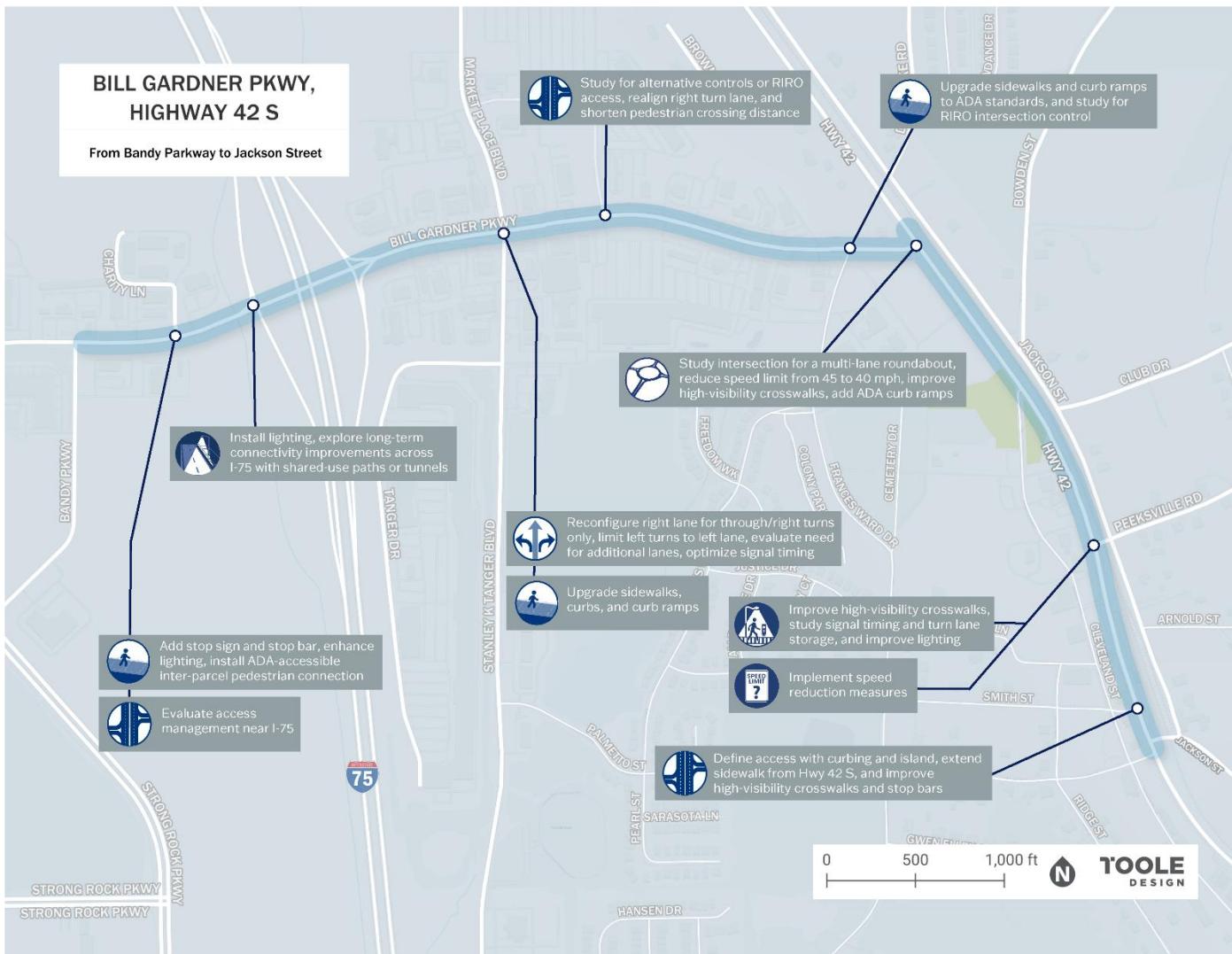
Additionally, high-visibility crosswalks should be refreshed and re-applied to improve pedestrian safety. This intersection is part of the corridor recommendation which aims to reduce speeds and enhance pedestrian safety as vehicles enter the downtown area. Speed reduction measures, lighting improvements, and streetscaping should be considered to create a more pedestrian-friendly environment and foster a stronger sense of place.

Driveway

This is a stop-controlled side street intersection providing driveway access to Cleveland Street, located just north of

the Artisan Markets parking lot exit.

Intersection Improvements


It is recommended to clearly define this access point with curbing, an island, and designated parking on the north side, enabling the installation of a proper stop sign. Alternatively, landscaping could replace parking, and the sidewalk from Highway 42 South should be extended. It is recommended that high-visibility crosswalks and stop bars be re-applied.

Recommendation Implementation

Table 19 below summarizes the list of corridor and intersection recommendations offered to reduce crashes for all modes and enhance safety along the Bill Gardner Parkway / Highway 42 South corridor. Each recommendation has an estimated timeframe based on whether the recommendation is a Short- (1-3 years), Mid- (3-5) years, or Long- (5+ years) term project. **Figure 13** below shows some of the recommendations along the corridor.

Table 19: Recommended Countermeasures for Bill Gardner Parkway / Highway 42 South Corridor

Time Frame	Location	Recommendation
Short (1-3 years)	Segment	Re-evaluate speed limits to be appropriate for corridor
	Segment	Install dynamic speed feedback signage
	Intersection	Install/refresh high-visibility crosswalks
	Intersection	Install stop bar and sign
	Intersection	Narrow lanes
Medium (3-5 years)	Segment	Install median
	Intersection	Reconfigure ramps to meet ADA standard
	Segment	Install additional lighting
	Segment	Install continuous sidewalk
Long (5+ years)	Intersection	Study for intersection control evaluation
	Segment	Install / upgrade streetscape
	Intersection	Install traffic calming measures
	Segment	Install shared-use path
	Segment	Improve drainage
	Intersection	Construct a roundabout

Figure 13: Recommendations along Bill Gardner Parkway / Highway 42 South corridor

Corridor 5: Jonesboro Street from Doris Street to Atlanta Street

City of McDonough

The following section of this report provides details of Corridor 5's existing conditions, crash history, and recommended improvements. Crash data from 2019 to 2023 was used to analyze this corridor. This corridor was the highest-ranked local road in the City of McDonough for priority projects. Regardless of road ownership (state, county, or local), this segment ranks 20th overall for priority projects for Henry County on the 23 priority projects list.

Context

The studied section of roadway on Jonesboro Street, 0.62 miles, between Doris Street and Atlanta Street is a two-lane one-way (westbound) principal arterial with a posted speed limit of 35 mph, see **Figure 14**. This corridor begins with a roundabout at Doris Street, includes a railroad at-grade crossing between Doris Street and Geranium Drive, and ends in downtown McDonough at McDonough Square. Keys Ferry Street serves as the other one-way pair (eastbound) to this corridor. There is continuous sidewalk on the north side of the entire corridor and sidewalk on the south from Marian's Way to Atlanta Street. The AADT for this corridor ranges from 15,300 to 23,100 with 4-5% truck traffic.

Current or Planned Projects

There are no currently planned projects in the area.

Note: Safety risks and benefits for existing projects or recently constructed projects cannot be addressed in this report.

Figure 14: Jonesboro Street Corridor Context

Crash History

A crash data analysis was performed for the Jonesboro Street corridor to understand the contributing factors and identify focus areas for countermeasures. From 2019 to 2023, 123 total crashes occurred along the 0.62 miles segment between Doris Street and Atlanta Street. There were three crashes involving a motorcycle, one of which was a FSI crash.

Overall, there were no fatalities (K), 1 severe injury crashes (A), and 6 crashes resulting in minor injuries (B).

Table 20 shows the summary of the crash data by collision manner for the Jonesboro Street corridor. **Table 21** shows the top four contributing factors as noted in the crash reports of crashes on Jonesboro Street corridor. **Table 22** summarizes the FSI crash (1) that occurred on this corridor. Countermeasure recommendations are made based on the available crash data, such as collision manner and contributing factors, with emphasis on locations along the corridor with FSI crashes. **Figure 15** shows the spatial distribution of crashes on the Jonesboro Street corridor.

Table 20: Jonesboro Street Crashes Collision Manner, if noted

Collision Manner	# of Crashes	# of FSI Crashes
Angle Crash	53	1
Sideswipe-Same Direction	36	--
Rear End	28	--
Single Vehicle	4	--
Head On	2	--

Table 21: Jonesboro Street Top 4 Contributing Factors of All Crashes

Contributing Factors	# of Crashes
Changed Lanes Improperly	8
Improper Turn	5
Following Too Close	3
Failure to Yield	2

Table 22: Jonesboro Street FSI Crash Summary

Intersection	Intersection Type	Collision Manner	Contributing Factors
Geranium Drive	Side Stop- Controlled	Angle Crash (motorcycle crash)	**

***No contributing factors were listed for this crash.*

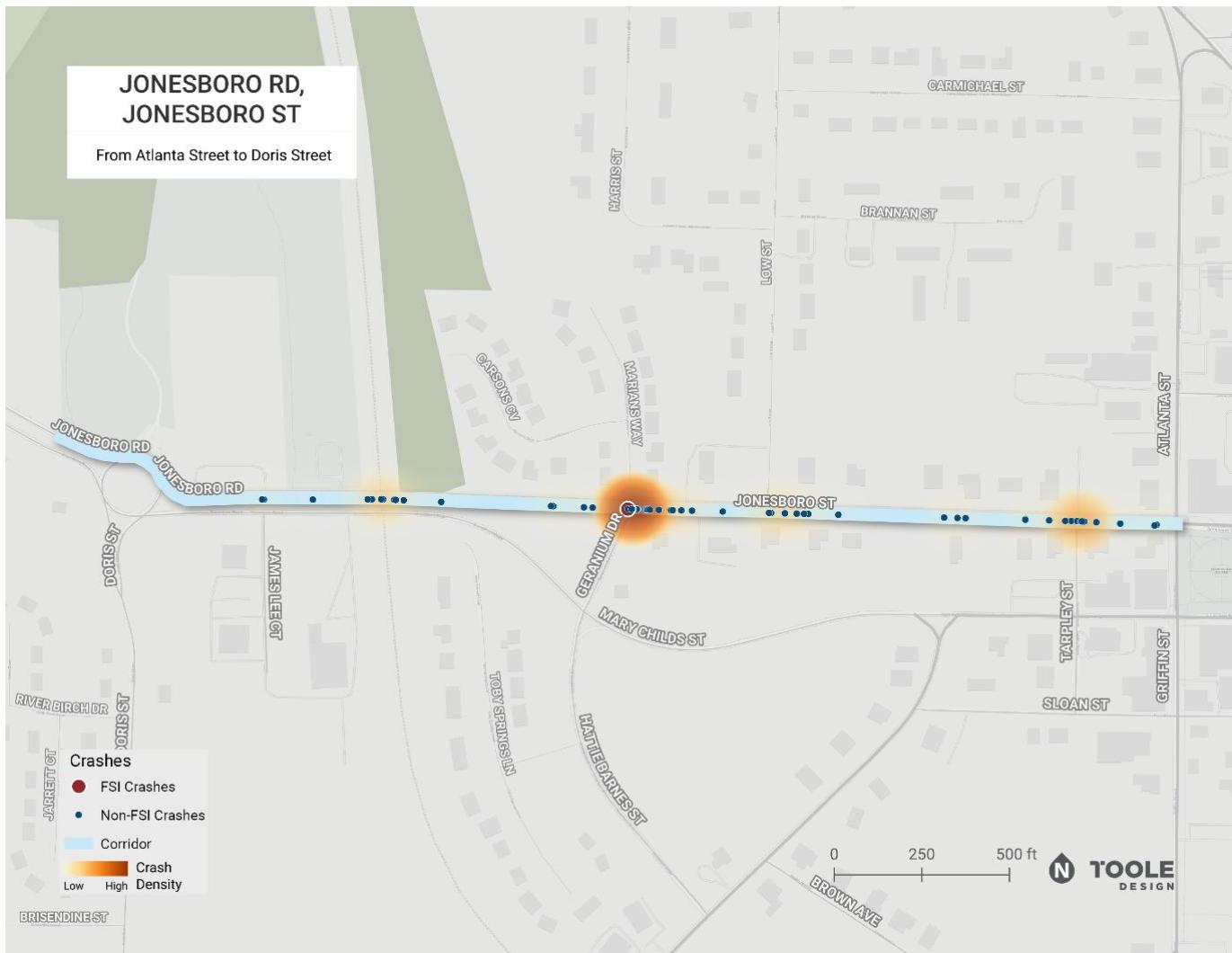


Figure 15: Crash map of Jonesboro Street corridor

Corridor Recommendations

Most of the crashes on this segment are angle crashes or sideswipe-same direction cause by changing lanes improperly or improper turns.

Pedestrian & Bicycle Facilities

It is recommended to upgrade existing sidewalks and curb ramps to be ADA compliant. Specific locations for improvement include at the Welcome Center, at the intersection of Atlanta Street, and at Tapley Street. This corridor should be studied for bicycle facilities to complement the directional bike lane on Fayetteville Road / Keys Ferry Street (one way pair). This facility would provide a complete connection from the downtown center to Alexander Park West for all modes. It is recommended to install additional lighting along the sidewalk and at intersections for improved visibility.

Signing & Marking

Additional one-way signage should be added along the corridor and side streets to help prevent wrong way driving. Enhanced signage should also direct merging traffic to the appropriate lane to ensure smoother and safer transitions through the intersection. Installing reflective raised pavement markings along the lane lines will also indicate to

drivers the wrong way. Filling in the extra paved shoulder area closer to downtown with hatching and raised pavement markings or delineators will help visually narrow the road and hopefully keep drivers in their lane. A long-term solution would be to repurpose this area for the proposed bike facility or to move the curb inward.

Intersection Recommendations

The following observations were made at specific intersections along Jonesboro Street.

Doris Street

This multi-lane roundabout, completed in 2020, has a posted speed limit of 15 mph. A pre- and post-improvement traffic study should be conducted to assess the impact on crash reduction following the installation of the roundabout. This study could help inform future proposed roundabout projects' designs and lessons learned in the City of McDonough and elsewhere in Henry County.

Geranium Drive / Marian's Way

The intersection of Geranium Drive and Marian's Way is a side stop-controlled intersection, where crash types are predominantly angle and sideswipe crashes. A severe injury angle crash involving a motorcycle occurred at this location in 2022. Although the speed limit is reduced to 35 mph, the intersection's wide design allows vehicles on both Geranium Drive and Marian's Way to select either lane when turning, which can create confusion about lane usage and leads to visibility issues for drivers. On the western corner of Geranium Drive, there is a large striped gore area.

Intersection Improvements

It is recommended to reduce the curb radius with a curb extension and streetscaping to promote slower speeds through the intersection.

Pedestrian & Bicycle Facilities

Geranium Drive southbound is currently signed with a bike sign. It is recommended to complement this with sharrows and a "Share the Road" sign since there is no bicycle facility. The nearest existing crosswalks are located 1,200 to 1,500 feet away, highlighting the need for more pedestrian crossing options along this corridor to improve pedestrian connectivity and reduce risky crossing patterns. It is recommended to install a mid-segment crosswalk with Rectangular Rapid Flashing Beacons (RRFBs) at this intersection.

Atlanta Street / Griffin Street

This is a signalized intersection that accommodates one-way traffic westbound and southbound. It is recommended to upgrade all curb ramps to meet ADA accessibility standards. Pedestrian signal heads and push buttons should be installed at every crosswalk and the existing crosswalks should be restriped with high-visibility markings.

Recommendation Implementation

Table 23 below summarizes the list of corridor and intersection recommendations offered to reduce crashes for all modes and enhance safety along the Jonesboro Street corridor. Each recommendation has an estimated timeframe based on whether the recommendation is a Short- (1-3 years), Mid- (3-5) years, or Long- (5+ years) term project. **Figure 16** below shows some of the recommendations along the corridor.

Table 23: Recommended Countermeasures for Jonesboro Street Corridor

Time Frame	Location	Recommendation
Short (1-3 years)	Segment	Install raised pavement markings
	Segment	Install signage
Medium	Intersection	Install curb extensions

(3-5 years)	Intersection	Reconfigure ramps to meet ADA standard
	Intersection	Install RRFBs
	Segment	Install bike facility
	Segment	Install continuous sidewalk

Figure 16: Recommendations along Jonesboro Street corridor

COMPREHENSIVE TRANSPORTATION PLAN (CTP) EVALUATION

HENRY COUNTY TRANSPORTATION SAFETY ACTION PLAN

Table of Contents

Introduction	4
Safety Assessment Methodologies	4
Automobile Safety Analysis (CTP pg 166)	4
Bicycle/Pedestrian Safety Analysis (CTP pg 175)	4
Safety & Risks within CTP Project Types.....	5
Project Assessment.....	6
High Risk Network.....	6
High Injury Network	9
Socioeconomic Disparities	12
Project Recommendations	16
Roadway Projects (CTP pg 235).....	16
Active Transportation Projects (CTP pg 248)	19
Conclusions	20

List of Abbreviations & Key Terms

AADT	Annual Average Daily Traffic
VPD	Vehicles Per Day
KABCO	Injury Severity Scale
FSI	Fatal or Serious Injury (K and A on the KABCO scale)
FI	Fatal and All Injuries (K, A, B and C on the KABCO scale)
FSI Rate	The percent of crashes that resulted in an FSI; calculated as [FSI Crashes] / [Total Number of Crashes]
GDOT	Georgia Department of Transportation
Vulnerable Roadway User	Pedestrian, bicyclist, or other Non-Automobile road user

Introduction

The purpose of this report is to assess programmed projects from Henry County's 2022 Comprehensive Transportation Plan (CTP) against the safety findings from the analysis conducted in the Transportation Safety Action Plan (TSAP), specifically the High-Risk Network (HRN) and High Injury Network (HIN). Recommendations for strategies and countermeasures for all project types described in the CTP are included to ensure coordination between the TSAP and future CTP activities.

Safety Element of the 2022 CTP

Safety is a critical component of any transportation network. Facility design and travel patterns can lead to conditions which increase the probability of crashes. Not only are locations with these safety deficiencies dangerous to the user, but they can also restrict mobility and connectivity as frequent crashes severely reduce capacity by blocking one or more travel lanes for a period of time.

Safety analysis was performed with the goal of identifying these locations. Two safety analyses were performed: an automobile safety analysis and a bicycle/pedestrian safety analysis. Separate safety analysis methodologies are needed for these modes due to the fact that historical crash trends are far less predictive of bicycle and pedestrian crashes than automobile crashes.

Safety Assessment Methodologies

Automobile Safety Analysis (CTP pg 166)

The CTP identifies high crash locations, which are segments and intersections with crash rates over twice the state average. Thirty locations for segments and an additional thirty locations for intersections with the highest rates were selected for a safety screening. In addition, the ten unsignalized intersections with the highest crash rate were also selected due to safety deficiencies.

Segments with sharp curves, winding roads, and located close to intersections consistently ranked highly. Segment commonalities include minimal or no shoulders, high densities of driveways (residential and/or commercial), missing turn lanes, faded pavement markings, and visibility barriers (roadway curvature, objects in clear zone, sight distance, overgrown vegetation). Segments with high intersection density, especially unsignalized intersections, were also selected.

Highest crash rate intersections that were identified overall included intersections that have concerns regarding skew, multiple driveways or minor intersections nearby, missing turn lanes, sight distance, faded pavement markings, high truck traffic, and experience congestion. Unsignalized intersections with the highest crash rates have identified safety concerns including missing turn lanes, straight and rural roadway design (speeding), faded pavement markings, minimal or no shoulders, sight distance, and high vehicle speeds.

Bicycle/Pedestrian Safety Analysis (CTP pg 175)

The CTP conducted a bicycle and pedestrian safety analysis by developing an index that identifies high risk corridors based on crash history and risk factors (lighting, speed limit, functional classification, number of lanes, and ARC policy priorities). Roadway segments that scored within the 90th and 98th percentile on the risk index for each mode were mapped, however, further analysis of these corridors was not completed.

In the next CTP update or project development process, more emphasis and elaboration on high-risk corridors for bicycles and pedestrians should be considered.

Safety & Risks within CTP Project Types

The CTP includes several project types: arterial, intersection capacity, intersection safety, new roadway, road upgrade, road widening, roadway capacity, sidewalk, and trail. The project recommendations are organized by goal:

Major Capacity Adding Projects:

- Road widening
- New roadway
- Road upgrade
- Roadway capacity

Operational and Safety Recommendations

- Arterial upgrades
- Intersection improvements (safety and capacity)

Active Transportation Projects:

- Sidewalks
- Trails

The CTP specifically highlights major capacity adding projects as necessary in response to Henry County's increasing population, traffic, and economic activity. **Adding vehicle capacity or increasing vehicle speeds to improve congestion and mobility is typically at odds with traffic calming, public and active transportation, and traffic safety. Capacity adding projects must be carefully designed to accommodate multimodal travel with context-sensitive facilities, speed management, or mode shift strategies that mitigate safety concerns and support broader county safety or affordability goals.**

Using the SAP as a framework, the next CTP update and future project development should reassess capacity adding projects to consider prioritizing other modes and reducing travel speeds to improve safety for all road users. Example countermeasures that could complement capacity adding projects include infrastructure improvements (e.g., modal separation, protection of vulnerable road users, priority to active modes), traffic calming on arterials and at intersections to reduce speeds and improve visibility (e.g., road diets, visual cues, pedestrian island, curb extensions), and policies for systemic safety measures (e.g., no turn on red, slower speed limits).

This framework aligns with the Safe System Approach (SSA). SSA is founded on a paradigm shift in transportation planning, policy, and design that anticipate human mistakes and minimize deaths or serious injuries when collisions occur. This systemic approach centers safe road users, safe vehicles, safe speeds, safe roads, and post-crash care. Example applications of the SSA that can be integrated into the building and implementation of CTP projects include separating road users in space and time, increasing attentiveness, reducing vehicle speeds, and reducing impact forces. Each component of the SSA works together to increase safety for all roadway users.

Project Assessment

This section compares the projects from the CTP with the current SAP analysis, specifically the high risk network, high injury network, and crash metrics. The current TSAP analysis is based on data from 2019-2023, which does not directly align with data analysis from the 2022 CTP.

High Risk Network

A total of 239 projects out of 371 (64%) are located on the HRN. Figure 1 highlights the types of projects along the HRN and how many projects are planned. While most projects fall into sidewalk, trail, or intersection safety categories, some are road widening and arterial upgrades. As the latter two project types typically increase risks for all road users, especially vulnerable road users (VRUs), they should be minimized within the county. Figure 1 illustrates the distribution of CTP projects located on the HRN. Most projects along the HRN are categorized as medium term, long term, and aspirational sidewalk projects. Long term intersection safety, medium term trail, long term trail, and long term widening projects also make up a significant number of projects. Figure 2 shows the HRN and all CTP projects, while Figure 3 shows only the projects that are located on the HRN.

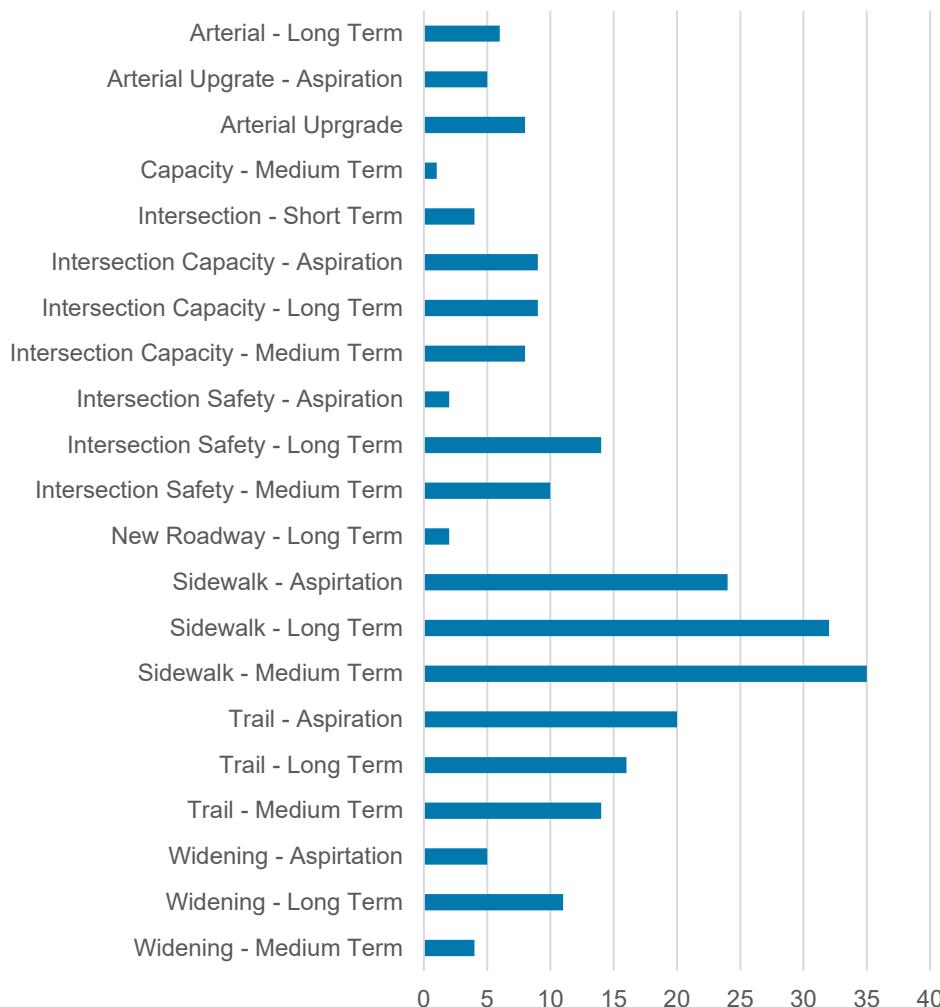
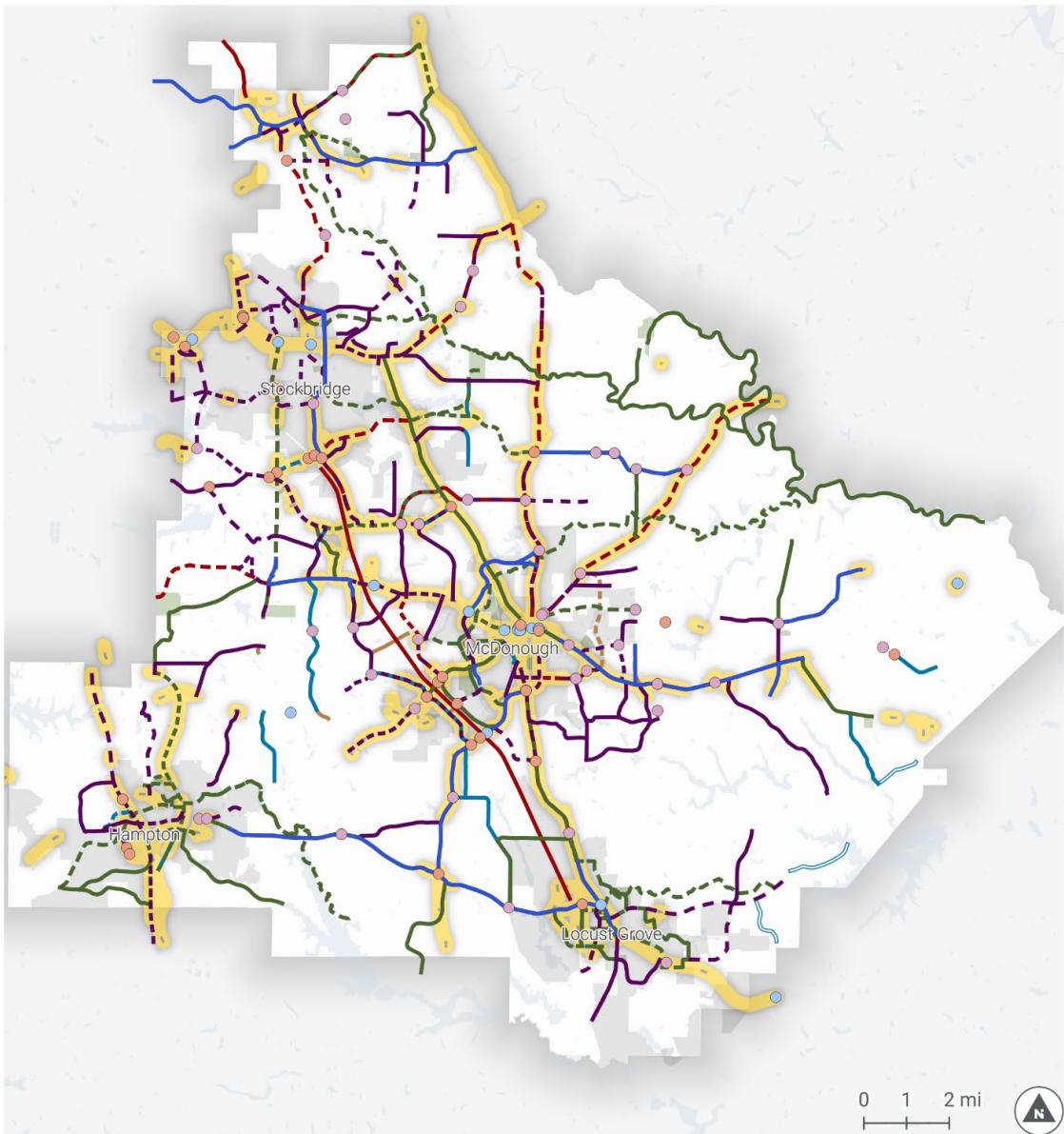
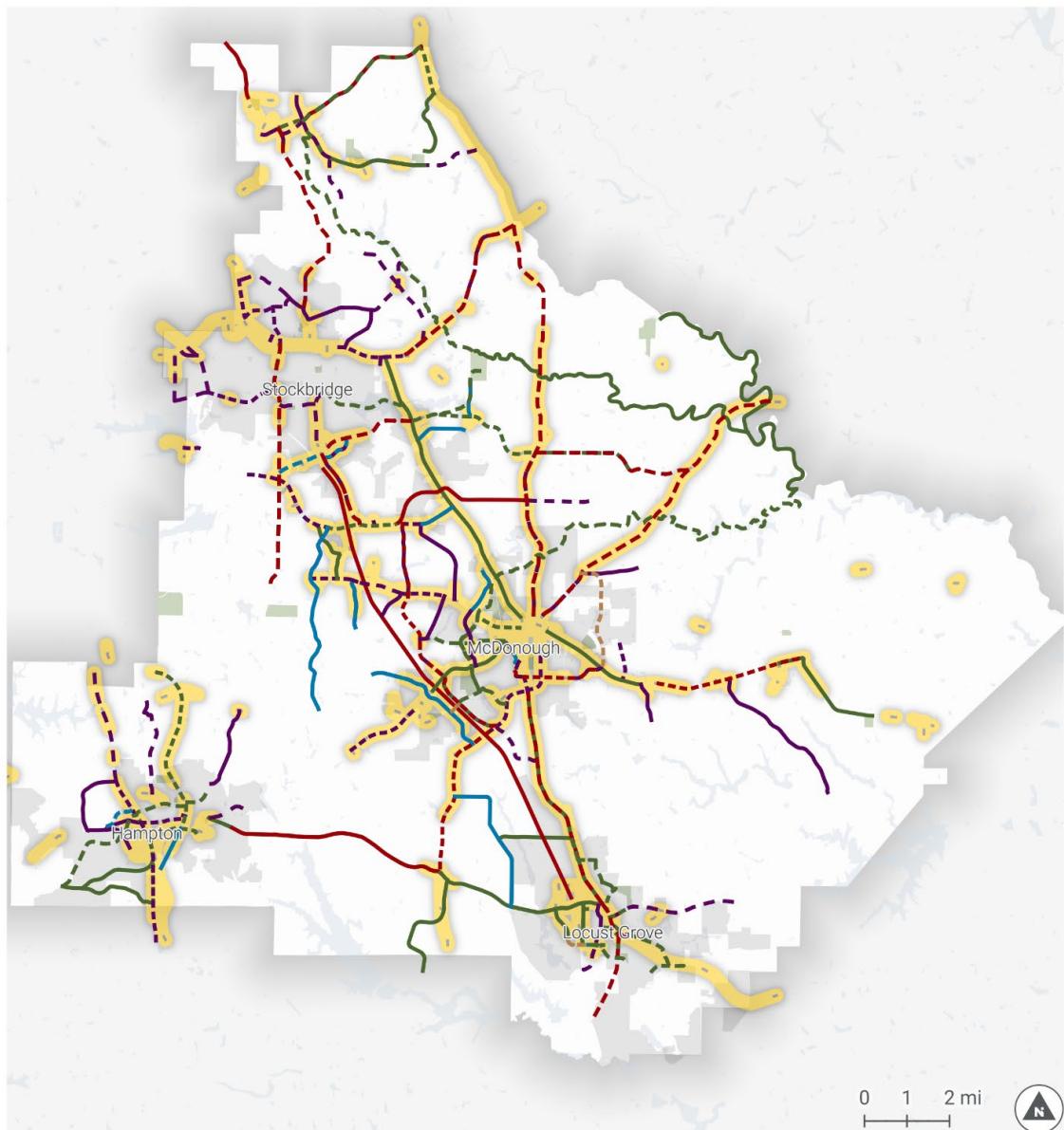



Figure 1: Distribution of CTP projects located on the HRN.



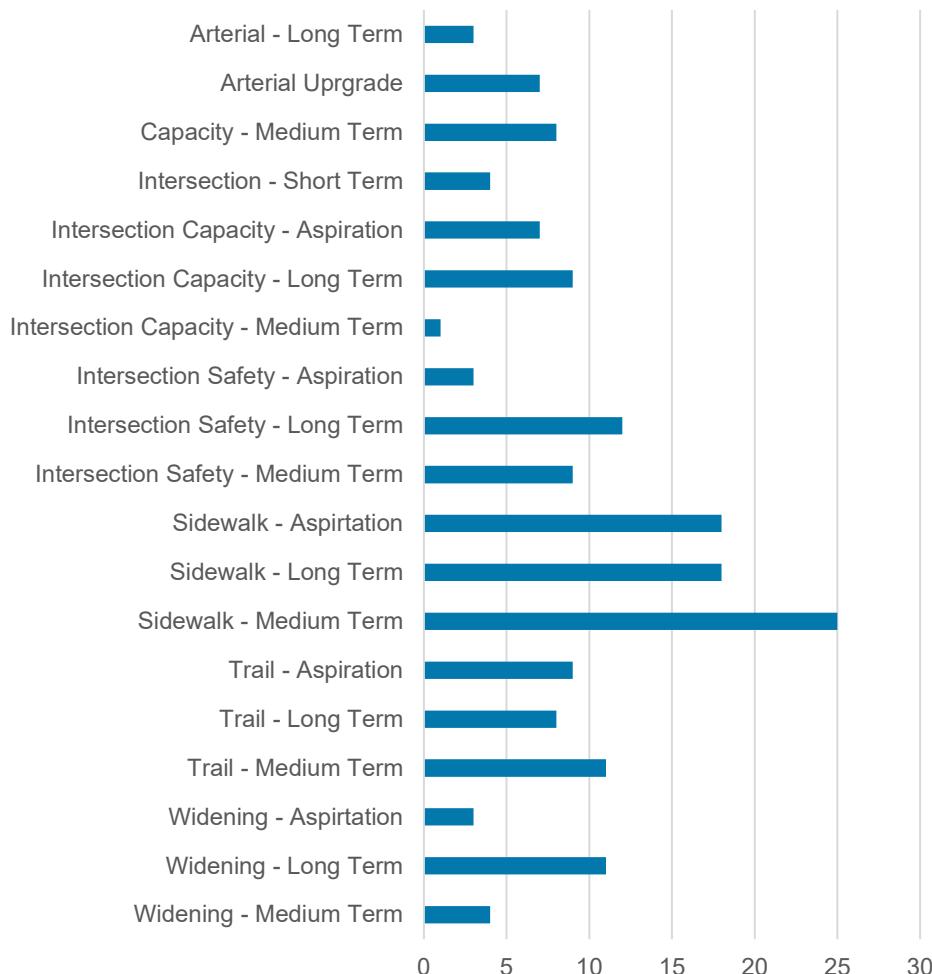
CTP Projects

● SPLOST & TSPLOST	● New Roadways	Timeline	● HRN
● Intersection - Cap	● Widenings	Aspiration	● Cities
● Intersection - Safety	● Links	Short-term	● Henry County
● Major Transportation Projects	● Trails	Medium-term	
● Roadway Upgrades	● Sidewalks	Long-term	

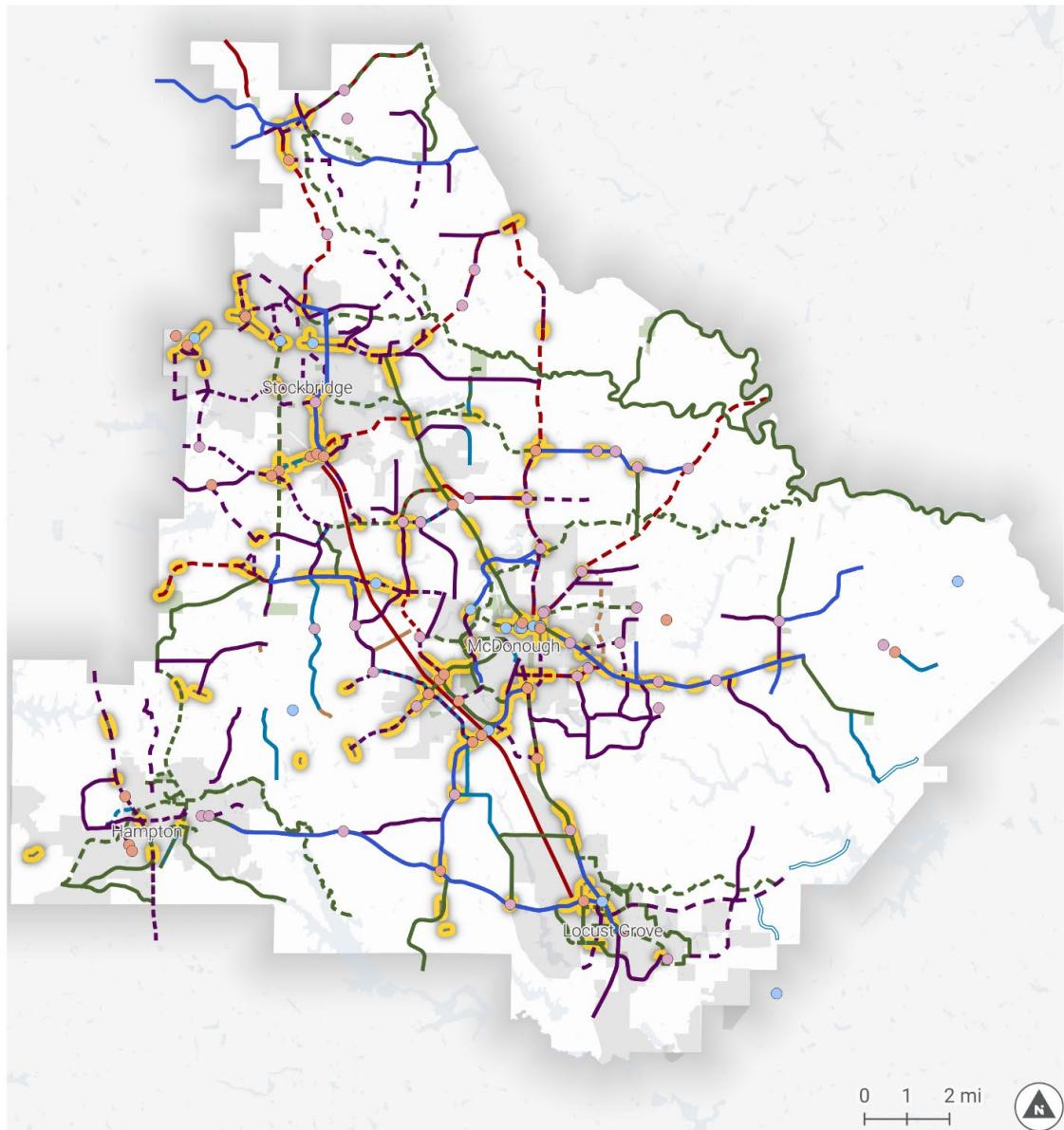
TOOLE DESIGN HENRY COUNTY
**TRANSPORTATION
SAFETY ACTION PLAN**
mobility and safety for all

Figure 2: Map of all CTP projects and the HRN.

CTP Projects


● SPLOST & TSPLOST	— New Roadways	Timeline	— HRN
● Intersection - Cap	— Widening	— Aspiration	— Cities
● Intersection - Safety	— Links	— Short-term	— Henry County
— Major Transportation Projects	— Trails	— Medium-term	
— Roadway Upgrades	— Sidewalks	— Long-term	

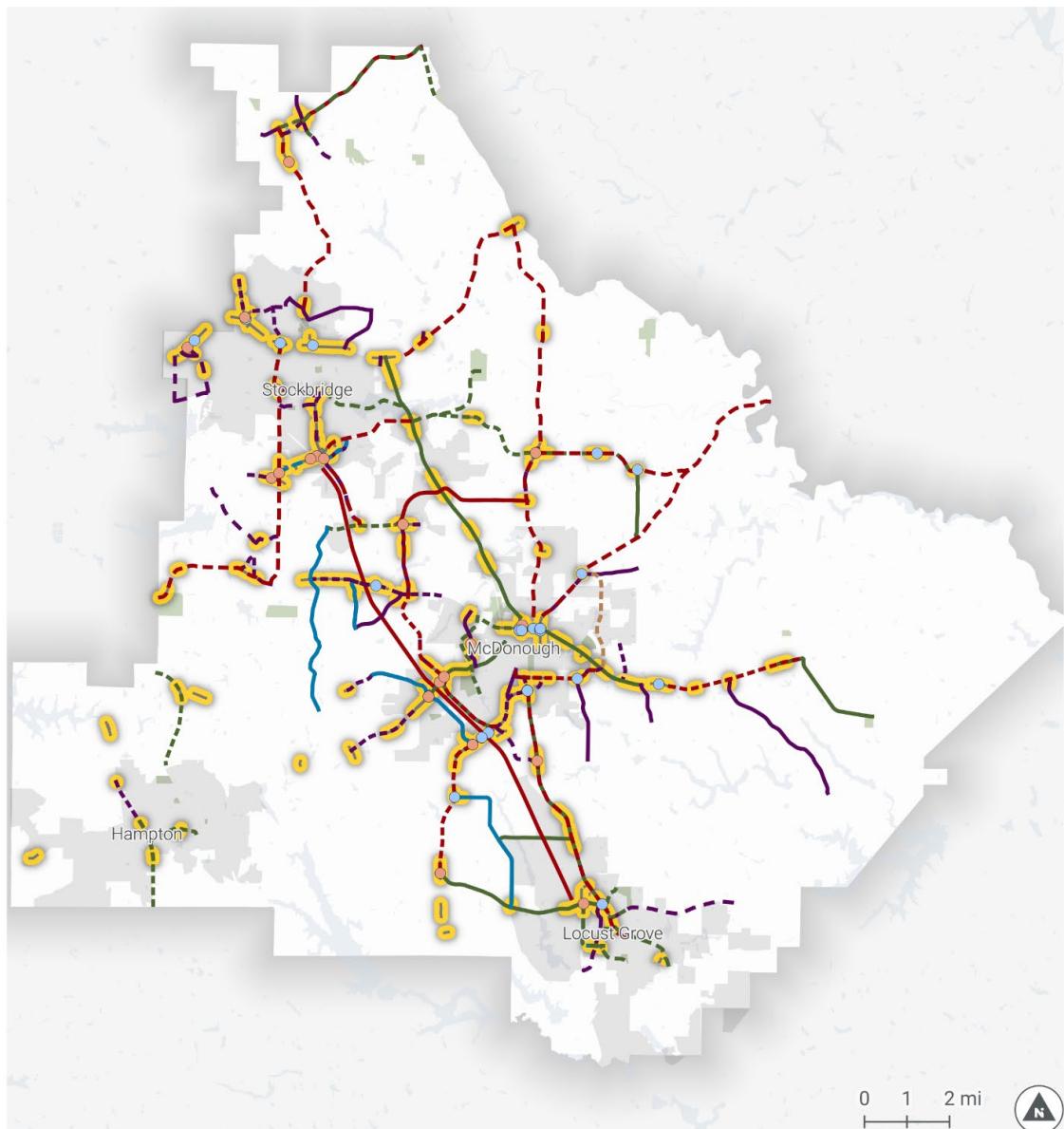
TOOLE DESIGN HENRY COUNTY
TRANSPORTATION SAFETY ACTION PLAN
 mobility and safety for all


Figure 3: Map of CTP projects located on the HRN.

High Injury Network

A total of 171 out of 371 projects (46%) are located on the HIN. Figure 4 displays the projects by type and summarizes how many projects are planned. Most projects along the HIN are categorized as medium term, long term, and aspirational sidewalk projects. Long term intersection safety, medium term trail, and long term widening projects also make up a significant number of projects. Like the projects along the HRN, projects along the HIN are largely sidewalk, trail, or intersection safety projects. Some projects include road widening and arterial upgrades that risks for all road users, especially VRUs. Road widening and arterial upgrades should be minimized within the county. Figure 5Figure 2 shows the HIN and all CTP projects, while Figure 6 shows only the projects that are located on the HIN.

Figure 4: Distribution of CTP projects located on the HIN.



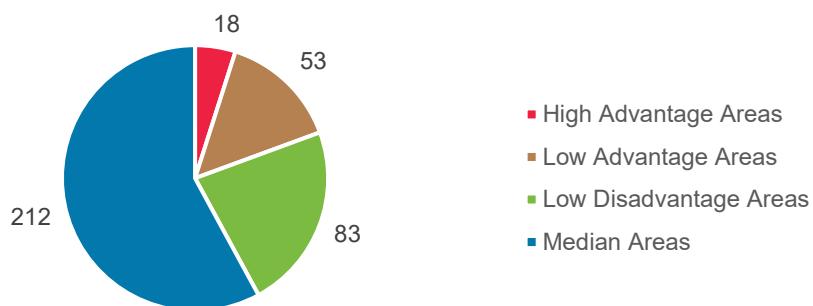
CTP Projects

● SPLOST & TSPLOST	● New Roadways	Timeline	● HIN
● Intersection - Cap	● Widenings	Aspiration	● Cities
● Intersection - Safety	● Links	Short-term	● Henry County
● Major Transportation Projects	● Trails	Medium-term	
● Roadway Upgrades	● Sidewalks	Long-term	

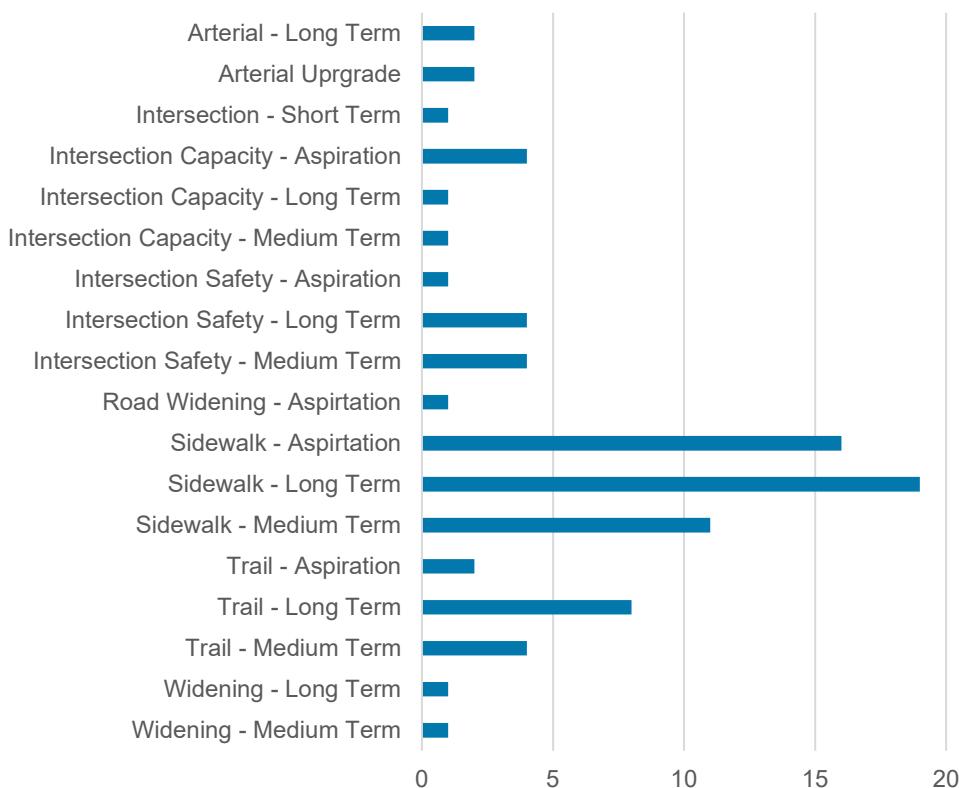
TOOLE DESIGN HENRY COUNTY
**TRANSPORTATION
 SAFETY ACTION PLAN**
 mobility and safety for all

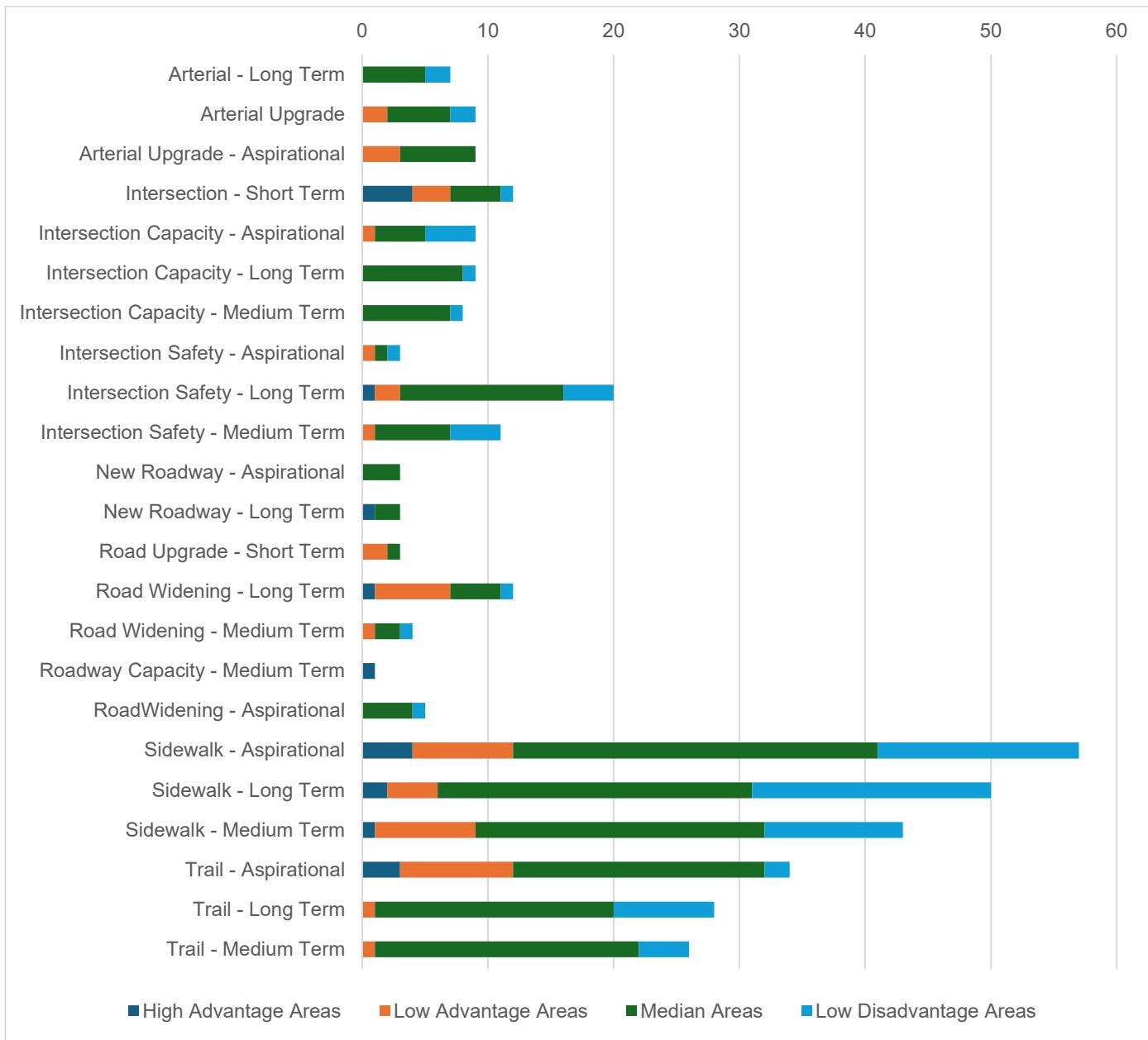
Figure 5: Map of all CTP projects and the HIN.

CTP Projects


● SPLOST & TSPLOST	— New Roadways	Timeline	— HIN
● Intersection - Cap	— Widening	— Aspiration	— Cities
● Intersection - Safety	— Links	— Short-term	— Henry County
— Major Transportation Projects	— Trails	— Medium-term	
— Roadway Upgrades	— Sidewalks	— Long-term	

TOOLE DESIGN **HENRY COUNTY**
TRANSPORTATION
SAFETY ACTION PLAN
mobility and safety for all


Figure 6: Map of CTP projects located on the HIN.


Socioeconomic Disparities

A total of 83 out of 371 projects are located within areas of low disadvantage, based on areas of high and low advantage and disadvantage identified within the Henry County TSAP Descriptive Crash Analysis Report, indicating that less than a quarter of all planned projects will be implemented in communities experiencing the greatest socioeconomic disparities. Figure 7 illustrates the full distribution of planned projects in the CTP based on areas of advantage and disadvantage. Most planned projects in areas of low disadvantage are categorized as medium term, long term, and aspirational sidewalk projects. Not every project located within a community will benefit that community directly; each project must be coordinated with community input and integrate features that will support travel for all users. Figure 8 highlights the distribution of projects by type and by disadvantaged area status. Medium term, long term, and aspirational sidewalk projects represent the majority of projects located in areas of low disadvantage, followed by long term and medium-term trail projects.

Figure 7: Distribution of CTP projects by areas of advantage and disadvantage.

Figure 8: Distribution of CTP projects by project type and by disadvantaged area status

Only 36 projects are located along both the HRN, HIN, and in areas of low disadvantage. Table 1 includes corridor projects, ranked by the number of FSI crashes present from 2019 to 2023. Projects along corridors affect nearby features and adjacent land use. **Among the project locations, the highest ranked roadway project is slated to be widened in the near future, which is a concern based on the high number of FSI crashes.** Rather than widening the roadway, traffic calming measures and improvements to active transportation facilities (separation, protection, visibility, priority) to shift travelers to alternative modes can help improve safety. Table 2 contains intersection projects also sorted by the number of FSI crashes. Only one intersection project location has an FSI crash between 2019 and 2023. However, this approach does not account for crashes near or adjacent to intersections – a limitation of the data. Therefore, crashes related to failure to stop, left turns, large crossing distances, minimal sight distance, curves in the roadway, and other factors may not be well-represented in this table. When rebuilding and implementing projects at intersections, it is important to reference the TSAP's Engineering

Toolkit to improve safety and minimize risk of crashes. Table 1: CTP corridor projects located along the HRN, HIN, and within areas of low disadvantage, ranked by FSI.

Project ID	Name	Type	FSI	Class	Speed	Land Use	Volume (AADT)	Lanes
CTP-R06	Oak Grove Road Widening	Widening - Medium Term	17	Feeder Roads	35-40 mph	Residential	5000-10000	2
	Willow Lane	Sidewalk - Long Term	10	Feeder Roads	35-40 mph	Residential	5000-10000	2
LM-134	US 19/US 41	Sidewalk - Medium Term	8	State Highways	40+ mph	Commercial	>=10000	2
		Trail - Medium Term						
LM-213	US19/US41 Sidepath 1	Trail - Long Term	8	Feeder Roads	40+ mph	Commercial	>=10000	2
		Rock Quarry Road						
LM-207	Fairview Road Sidepath 1	Sidewalk - Long Term	7	Feeder Roads	40+ mph	Commercial	>=10000	2
		US19/US41 Sidepath 2						
LM-215	Jonesboro Road	Sidewalk - Long Term	7	State Highways	40+ mph	Commercial	>=10000	2
		East Atlanta Road/Old Conyers Road						
LM-05	Jonesboro Road	Sidewalk - Aspiration	4	Feeder Roads	35-40 mph	Residential	5000-10000	2
		Sidewalk - Medium Term						
LM-172	US 23/SR 42	Sidewalk - Medium Term	3	State Highways	40+ mph	Commercial	>=10000	2
		Valley Hill Road						
LM-86	Panola Road	Sidewalk - Long Term	3	Feeder Roads	35-40 mph	Residential	5000-10000	2
		McDonough Parkway						
LM-100	Banks Road	Sidewalk - Long Term	3	Feeder Roads	40+ mph	Commercial	5000-10000	2
		Pinehurst Drive						
LM-117	Mount Carmel Road	Sidewalk - Aspiration	3	Subdivision Roads	25-30 mph	Planned Development	1500-5000	2
		McDonough Parkway						
LM-06	Camp Creek Greenway Model Mile	Sidewalk - Aspiration	2	Feeder Roads	40+ mph	Industrial	1500-5000	2
		US 23/SR 42						

CTP-S14	McDonough Parkway	Arterial Upgrade	1	Feeder Roads	35-40 mph	Commercial	5000-10000	2
LM-85	Davis Road/North Davis Drive	Sidewalk - Medium Term	1	Feeder Roads	35-40 mph	Residential	5000-10000	2
LM-169	West Panola Road/East Atlanta Road	Sidewalk - Aspiration	0	Feeder Roads	40+ mph	Commercial	5000-10000	2
LM-111	Country Club Drive	Sidewalk - Aspiration	0	Feeder Roads	35-40 mph	Commercial	5000-10000	4
CTP-S24	Country Club Drive	Arterial - Long Term	0	Feeder Roads	35-40 mph	Commercial	5000-10000	4
LM-112	Shields Road	Sidewalk - Medium Term	0	Feeder Roads	35-40 mph	Residential	5000-10000	2
LM-121	Dent Drive	Sidewalk - Aspiration	0	Subdivision Roads	40+ mph	Commercial	>=10000	4
CTP-R29	Eagles Landing Parkway Widening	Widening - Long Term	0	Subdivision Roads	25-30 mph	Commercial	<=1500	1

Table 2: CTP intersection projects located along the HRN, HIN, and within areas of low disadvantage, ranked by FSI.

Project ID	Name	Type	FSI
------------	------	------	-----

CTP-IS39	McDonough Parkway at Bridges Road	Intersection Safety - Long Term	1
CTP-IS09	Hudson Bridge Road at I-75 Northbound Exit	Intersection Safety - Medium Term	0
CTP-IS36	Patrick Henry Parkway at Country Club Drive	Intersection Safety - Aspiration	0
CTP-IS04	US 23/SR 42 at SR 138	Intersection Safety - Medium Term	0
CTP-IC26	East Atlanta Road at US 23/SR 42/SR 138 (North Henry Boulevard)	Intersection Capacity - Aspiration	0
CTP-IC10	SR 138 at US 23/SR 42	Intersection Capacity - Medium Term	0
CTP-IC23	SR 138 at Flippin Road/Shields Road	Intersection Capacity - Long Term	0
CTP-IS06	Red Oak Road at Flippin Road	Intersection Safety - Long Term	0
CTP-IS03	US 23/SR 42 at Davis Road	Intersection Safety - Medium Term	0
CTP-IC29	Jonesboro Road at I-75 Toll Ramp	Intersection Capacity - Aspiration	0

Project Recommendations

Henry County can incorporate the Safe System Approach to proactively and systemically improve safety for all. Reducing vehicle travel speeds, through both managing posted speed limits and redesigning streets through planning and engineering decisions, improves safety both drivers and vulnerable road users. According to NACTO's City Limits, posted speed limits and design should work together to reduce speeds where modes mix and when crossing location density is high.¹ In addition, areas with high activity levels (based on land use context, congestion, curbside demand, transit, and bicycle/pedestrian volumes) should have low posted speed limits. Raised elements in the roadways, reducing vehicle lane width, and adding arterial slowpoints or gateway treatments work together to reduce speeds.

FHWA's Proven Safety Countermeasures aim to reduce roadway fatalities and serious injuries through strategies that address speed management, intersections, and safety for bicyclists and pedestrians. Traffic calming (road diets, curb extensions, narrow travel lanes), crosswalk enhancements (raised crosswalks, PHBs, RRFBs), raised medians (with marked crosswalks and pedestrian refuge islands), lighting, and protected bicycle lanes are examples of ways to improve safety.¹ All project recommendations that aim to improve safety in Henry County should keep these strategies centered throughout project development, planning, and design.

Roadway Projects (CTP pg 235)

Major Capacity Adding Projects

Projects in this category add new roadway connections or additional travel lanes through roadway widening. While some new roadways are needed to create new connections between locations, widening projects are largely at odds with the Safe System Approach because of the prioritization of vehicle travel over other modes. The following strategies, treatments, and countermeasures should accompany major capacity adding projects to improve safety.

Recommended Strategies:

- Reallocate right-of-way to increase modal options and encourage alternatives to personal vehicles.
- Incorporate raised crosswalks at midblock locations when adding capacity to two or three lane roads with speed limits below 30 mph and ADTs below 9,000.
- Build refuge islands on roadways with four or more lanes, high speeds, and high AADTs to reduce pedestrian exposure time and distance.
- Incorporate RRFBs for pedestrians at midblock crossings near activity centers, points of interest, or known crossing locations with high pedestrian volumes on roadways with speed limits below 40 mph.
- Implement PHBs at midblock crossing locations on roads with speed limits at or above 40 mph and/or with high vehicle traffic volumes. The FHWA recommends PHBs for roads with three or more lanes, fast speeds, and AADT above 9,000.
- Accommodate active transportation facilities and features (protected bike lanes, curb extensions, sidewalks, visual barriers, vegetation) during widening projects.

Recommended Proven Safety Countermeasures:

- Appropriate speed limits, reinforced by roadway designs that calm traffic and increase driver focus.
- Roadside design improvements at curves (clear zone, slope flattening, adding/widening shoulder)
- Corridor access management to address intersection spacing, limit driveway movements, and provide turn lanes.

¹ NACTO. (2020). *City Limits*. <https://nacto.org/publication/city-limits/>

- Road diets to reconfigure the right-of-way to reallocate space for bicycles, pedestrians, and dedicated turn lanes.

Operational & Safety Recommendations

Projects in this category impact roadway operations (turn lanes, shoulders, signal timing, intersection treatments, functional classification) as well as improve safety outcomes at the corridor and intersection scale (reduction of crashes and severity, improved traffic flow). The CTP indicates that roadways which were previously rural and low-volume now serve as minor arterials. This is problematic because they have higher crash rates as well as missing turn lanes, medians, and shoulders. The CTP categorizes operational and safety recommendations into two project types: arterial upgrades and intersection improvements. The following strategies, treatments, and countermeasures can be implemented to complement operational and safety projects to improve safety outcomes for all road users.

Recommended Strategies:

- Longer crossing times through signalization timing changes to prioritize pedestrians ahead of vehicle traffic.
- Protected phasing for left-turning vehicles to reduce the risk of conflicts, particularly with VRUs.
- Crossing islands for pedestrians to minimize crossing distances.
- Protected facilities for pedestrians and bicyclists.

Recommended Proven Safety Countermeasures:

- Road diets to calm traffic, manage speeds, reduce turn-related crashes, and accommodate all road users in the right-of-way.
- Crosswalk visibility enhancements, like high-visibility crosswalks, lighting, signage, and pavement markings.
- PHB installation on high-speed roadways with midblock crossings and/or uncontrolled intersections.
- RRFB installation at uncontrolled, marked crosswalks on roads with posted speeds under 40 MPH.
- Leading pedestrian intervals that prioritizes pedestrians during the crossing phase before vehicle movement, increasing safety through visibility and conflict reduction.
- Corridor access management that reduces driveways and corridor access points to minimize conflicts, balancing safety and mobility for all users.
- Dedicated turn lanes at intersections at major intersections with three or four legs, high speeds, and high traffic volumes.

Arterial Upgrades

The Henry County TSAP Descriptive Crash Analysis Report, as well as research from communities across the country, identifies arterials as being one of the most dangerous road types, especially for vulnerable road users. The systematic prioritization of strategies related to safety and traffic calming on arterials can mitigate these risks.

Designing dense networks of lower-speed roads that accommodate more modal options and can provide safer alternative routes to arterials for VRUs that should be considered in future planning and design.²

Arterial upgrade projects described in the CTP include additional vehicle travel lanes for turning or passing, shoulders, and median improvements. The CTP describes arterial upgrades as safety projects, which is potentially misleading. While signal retiming or median improvements improve safety for vulnerable road users when crossing, adding passing lanes or timing signals to prioritize vehicle traffic can be counterproductive. The following strategies, treatments, and countermeasures should accompany arterial projects to improve safety.

² Dumbaugh, E., & Zhang, Y. (2013). The Relationship between Community Design and Crashes Involving Older Drivers and Pedestrians. *Journal of Planning Education and Research*, 33(1), 83–95. <https://doi.org/10.1177/0739456X12468771>

Recommended Strategies:

- Prioritize traffic calming on arterials, especially in disadvantaged areas. Non-access-controlled arterials in communities across the country, often with multiple travel lanes in each direction, high speeds, and high AADTs, have a disproportionate risk for FSI crashes for vulnerable road users in low-income communities and communities of color.³
- Minimize widening or increasing vehicle traffic on arterials in favor of slower, narrower roadways and alternative modes of transportation.
- Prioritize separated, protected facilities for pedestrians and bicyclists on arterials.
- Reduce left-turn opportunities on arterials with high speeds and high traffic volumes.
- Implement traffic calming measures through quick-build projects to reduce speeds and improve safety on arterials (speed humps, curb extensions, protected facilities, chicanes, pedestrian refuge islands, paint).
- Include grade-separated active transportation crossings in intersection improvement projects.

Recommended Proven Safety Countermeasures:

- Walkways that allow people to safely traverse to desired destinations by walking or rolling without network gaps or discomfort reduce crashes involving pedestrians. Grade separated facilities, buffered both vertically and horizontally, are optimal safety treatments.
- Bicycle lanes, designed for the arterial's specific road and land use context, should be added whenever possible. Bicycle lanes should ideally be separate and protected from vehicle traffic and comfortable for riders of all ages and abilities.

Intersection Improvements

Intersection improvement projects named in the CTP include improving vehicle turning movements, lane reconfiguration, and signal timing. Intersection improvement projects are considered safety projects in the CTP, and additionally, they reinforce the strategies promoted in the SSA. The CTP highlights both dangerous and inefficient intersections that are targeted for improvements to reduce the rate and severity of crashes. The CTP also stresses that intersection improvements are more cost effective than corridor widening, which is also in alignment with safety recommendations. The following strategies, treatments, and countermeasures should accompany intersection projects to improve safety.

Recommended Strategies:

- Reduce left-turn opportunities on arterials with high speeds and high traffic volumes.
- Implement traffic calming measures through quick-build projects to reduce speeds and improve safety (speed humps, curb extensions, protected facilities, chicanes, pedestrian refuge islands, paint).
- Prohibit right turn on red to improve vulnerable road user safety and reduce conflicts.
- Simplify street crossings by reducing crossing distance and allowing pedestrians to focus on one direction of traffic at a time.
- Include grade-separated active transportation crossings in intersection improvement projects.

Recommended Proven Safety Countermeasures:

- Leading pedestrian intervals that prioritizes pedestrians during the crossing phase before vehicle movement, increasing safety through visibility and conflict reduction.

³ Dadashova, B., Boutros, A., Reyes, D., Schoner, J., Sanders, R., Chiovenda, M., Lee, C., Zhu, C., Wang, O., Elgart, Z., Panik, R. T., & Texas A&M Transportation Institute. (2024). *Exploring Risk Factors to Disparities in Pedestrian and Bicyclist Fatalities and Serious Injuries* [Application/pdf]. Federal Highway Administration: Office of Safety Research and Development. <https://doi.org/10.21949/1521546>

- Medians and pedestrian refuge islands on roads with four or more lanes to protect pedestrians when crossing distances are long. This treatment can be applied at mid-block crossings, multilane intersection approaches, or in areas with high pedestrian volumes (transit stops, activity centers).
- Crosswalk visibility enhancements, like high-visibility crosswalks, lighting, signage, and pavement markings.
- Dedicated turn lanes at intersections at major intersections with three or four legs, high speeds, and high traffic volumes.
- Yellow change intervals that reduce the running of red lights and improve intersection safety for all.

Emerging Technology Considerations

The CTP also identifies several gaps related to emerging technologies that could improve safety in the county. Project needs identified include signal timing and priority, ramp and parking meters, smart and connected streetlights and vehicles, EV charging, and improvements to communications (short-range, railroad event broadcasting). The following strategies can be considered alongside new technology to improve safety for all.

Recommended Strategies:

- Speed and red-light camera enforcement to reinforce speed management.
- Smart roadways using sensors to monitor traffic flow, weather, and other roadway activity to manage speed limits, lane allocations, and improve driver focus. Smart roadways can improve both safety and efficiency for all.
- Smart crosswalks with automatic indicators to notify drivers of oncoming crossing pedestrians.
- Bike signals at marked intersections.
- Automated pedestrian and bicyclist counters to understand and monitor active transportation system users, leading to future investments in safety and facilities.

Active Transportation Projects (CTP pg 248)

Sidewalks

The CTP indicates that sidewalks are the focus of capital investment recommendations for Henry County. The Plan describes NACTO standards and preferences related to sidewalk widths and placement, however, the Plan highlights the need for flexibility in practice. The CTP commits the county to several sidewalk standards: five-foot minimum widths, vertical buffers, extended horizontal buffer on high speed or traffic roads, frequent marked crosswalks, and curbs/curb medians when appropriate. Sidewalks are a well-established countermeasure to improve vulnerable road user health and safety and should continue to be prioritized in the future. The following strategies, treatments, and countermeasures should accompany sidewalk projects to improve safety for VRUs.

Recommended Strategies:

- Quick build projects are opportunities to efficiently improve safety for active transportation users (e.g., painted crosswalks, speed humps, slow streets, tightened corners).
- Coordinate sidewalk projects with other infrastructure improvements (e.g., multiuse trails, road diets, complete streets, intersection improvements, new roadways).
- Include grade-separated active transportation crossings in intersection improvement projects.
- Recommend reducing parking lots and driveways on land adjacent sidewalks with high volumes of pedestrians.

Recommended Proven Safety Countermeasures:

- Walkways that allow people to safely traverse to desired destinations by walking or rolling without network gaps or discomfort reduce crashes involving pedestrians. Grade separated facilities, buffered both vertically and horizontally, are optimal safety treatments.

- Bicycle lanes, designed for specific road and land use context, should be added whenever possible to complement sidewalk facilities. Bicycle lanes should ideally be separate and protected from vehicle traffic and comfortable for riders of all ages and abilities.
- Set appropriate speed limits, ideally lowering posted speeds in areas with high pedestrian activity. This includes near schools, parks, plazas, activity centers, and transit.

Multiuse Trails

The CTP identifies greenways and sidepath multiuse trails as alternative, important infrastructure to accommodate all forms of active transportation (e.g., walking, rolling, biking). Trail project recommendations should complement other investments in active transportation infrastructure, including sidewalks, bike facilities, crossings, and intersection improvements. The following strategies, treatments, and countermeasures should accompany trail projects to improve safety.

Recommended Strategies:

- Trails should be accessible, comfortable, and safe for users of all abilities. Lighting, minimal grade changes, surfaces, signage, and crossings are design areas of focus for accessibility, comfort, and safety.
- Quick build projects are opportunities to efficiently improve safety for active transportation users (e.g., painted crosswalks, speed humps, slow streets, tightened corners).
- Coordinate multiuse trail projects with other infrastructure improvements (e.g., parks and recreation spaces, sidewalks, intersection improvements).
- The MUTCD recommends warning signs, pavement treatments and traffic-calming measures where trails cross roadways.⁴
- Include grade-separated active transportation crossings in intersection improvement projects.

Recommended Proven Safety Countermeasures:

- Walkways that allow people to safely traverse to desired destinations by walking or rolling without network gaps or discomfort. AASHTO recommends trails to have a minimum of 10 to 14 feet, depending on anticipated usage.⁵

Conclusions

The Henry County 2022 CTP sets the county on the right course for transportation projects that can achieve safety goals and compliment the TSAP. The county has many projects located on the TSAP's HRN and HIN. These projects can be developed in ways that support safer outcomes and the implementation of this TSAP. The CTP's primary focus on multimodal facilities, particularly sidewalks and multiuse paths, support safer travel for vulnerable roadway users.

This report finds many elements that can be referenced in the TSAP, future CTP updates, and county decision making:

Conclusions by Geographies:

- 239 CTP projects (64%) are located on the HRN. Most projects fall into sidewalk, trail, or intersection safety categories which will likely benefit safer travel along these corridors. Some projects are road widening and arterial upgrades which will need to be designed to mitigate anticipated risks. As road widening and arterial

⁴ Rails to Trails Conservancy. (n.d.-b). *Trail Crossings*. Retrieved March 26, 2025, from <https://www.railstotrails.org/trail-building-toolbox/crossings/>

⁵ Rails to Trails Conservancy. (n.d.-a). *Designing Trails for User Type*. Retrieved March 26, 2025, from <https://www.railstotrails.org/trail-building-toolbox/designing-trails/>

upgrades typically increase risks for all road users, especially VRUs, they should be minimized within the county.

- 171 CTP projects (46%) are located on the HIN. Like the projects along the HRN, projects along the HIN are largely sidewalk, trail, or intersection safety projects which will likely benefit safer outcomes. Some projects are road widening and arterial upgrades which will need to be designed to mitigate anticipated risks. As these project types typically increase risks for all road users, especially VRUs, they should be minimized within the county and especially along the HIN.
- 83 CTP projects (22%) are located within areas of low disadvantage, indicating that less than a quarter of all planned projects will be implemented in communities experiencing the greatest socioeconomic disparities. Most planned projects in areas of low disadvantage are categorized as medium term, long term, and aspirational sidewalk projects. These projects will need to be coordinated with adjacent community input and designed to integrate measures that will benefit travel for all users.
- 36 CTP projects (9%) are located along both the HRN, HIN, and in areas of low disadvantage. Projects along corridors include features related to the roadway and adjacent land use. **The highest ranked project is slated to be widened in the near future, which is a concern based on the high number of FSI crashes.** Rather than widening the roadway, traffic calming measures and improvements to active transportation facilities (separation, protection, visibility, priority) to shift travelers to alternative modes can help improve safety.

Conclusions by Project Types:

- **Major capacity adding** projects add new roadway connections or additional travel lanes through roadway widening. While some new roadways are needed to create new connections between locations, widening projects are largely at odds with the Safe System Approach and Safe Streets and Roads for All programs.
- **Operational and safety** projects impact roadway operations (turn lanes, shoulders, signal timing, intersection treatments, functional classification) as well as improve safety outcomes at the corridor and intersection scale (reduction of crashes and severity, improved traffic flow). The CTP rightly emphasizes previously rural roadways that now serve as minor arterials as problematic because they have higher crash rates as well as missing turn lanes, medians, and shoulders.
- **Arterial upgrades** need careful review during project development and implementation. The Henry County TSAP Descriptive Crash Analysis Report, as well as research from communities across the country, identifies arterials as being one of the most dangerous road types, especially for vulnerable road users. While some arterial upgrades may be necessary, every project should be examined for strategies related to safety and traffic calming countermeasures that can mitigate known risks.
- **Intersection improvement** projects are also considered safety projects in the CTP because they reinforce the strategies promoted in Safe Streets and Roads for All programs. The CTP highlights both dangerous and inefficient intersections that are targeted for improvements to reduce the rate and severity of crashes. While intersection improvements are more cost effective than corridor widening, each needs careful review to mitigate potential risks during project development and implementation.
- **Emerging technology considerations** may highlight key projects or elements of emerging technologies that could improve safety via signal timing and priority, ramp and parking meters, smart and connected streetlights and vehicles, EV charging, and improvements to communications (short-range, railroad event broadcasting). These projects may be helpful in specific locations or situations.

- **Sidewalks** are the focus of capital investment recommendations for Henry County. Sidewalks are a well-established countermeasure to improve vulnerable road user health and safety and should continue to be prioritized in the future.
- **Greenways and multiuse trails** are important infrastructure to accommodate all forms of active transportation (e.g., walking, rolling, biking). Trail project recommendations should complement other investments in active transportation infrastructure, including sidewalks, bike facilities, crossings, and intersection improvements

Henry County can incorporate the Safe System Approach to proactively and systemically improve safety for all. Reducing vehicle travel speeds, through both managing posted speed limits and redesigning streets through planning and engineering decisions, improves safety both drivers and vulnerable road users.

POLICY RECOMMENDATIONS REPORT

**HENRY COUNTY
TRANSPORTATION SAFETY ACTION PLAN**

Prepared by:

Modern Mobility Partners
730 Peachtree St., NE, Ste. 650
Atlanta, GA 30308
www.modernmobilitypartners.com

Prepared for:

Henry County
140 Henry Parkway
McDonough, GA, 30253
<https://www.henrycountyga.gov/>

Disclaimer: This document is intended only for the use of the individual or entity for which it was prepared and may contain information that is privileged, confidential and exempt from disclosure under applicable law. Any dissemination, distribution or copying of this document is strictly prohibited.

Table of Contents

1	Introduction.....	1
2	Complete Streets	2
2.1	Complete Streets Policy Context.....	2
2.2	Complete Streets in Henry County.....	3
2.3	Complete Streets in Peer Jurisdictions.....	4
2.4	Complete Streets Policy Recommendation.....	4
2.5	Complete Streets Next Steps and Action Items	5
3	Unified Land Development Code Update.....	6
3.1	Unified Land Development Codes Policy Context.....	6
3.2	Unified Land Development Code in Henry County	6
3.3	Development Codes in Peer Jurisdictions	6
3.4	Unified Land Development Code Policy Recommendation	7
3.5	Unified Land Development Code Next Steps and Action Items.....	8
4	Freight Management	9
4.1	Freight Management Policy Context.....	9
4.2	Freight Management in Henry County.....	10
4.3	Freight Management in Peer Jurisdictions.....	10
4.4	Freight Management Policy Recommendation.....	10
4.5	Freight Management Next Steps and Action Items	11
5	First Responder Coordination and Crash Education	12
5.1	First Responder Coordination and Crash Education Policy Context.....	12
5.2	First Responder Coordination and Crash Education in Henry County.....	12
5.3	First Responder Coordination and Crash Education in Peer Jurisdictions.....	12
5.4	First Responder Coordination and Crash Education Policy Recommendation.....	12
5.5	First Responder Coordination and Crash Education Next Steps and Action Items	13
6	Summary.....	14

Table of Figures

Figure 2-1. Complete Street Before and After	2
Figure 2-2. Five Lane Complete Street Example	3
Figure 3-1. Five-Foot-Wide Sidewalk Example	7
Figure 4-1. ARC Freight Dashboard showing Henry County's Freight System	9

List of Abbreviations & Key Terms

AASHTO	American Association of State Highway and Transportation Officials
ADA	Americans with Disabilities Act
ARC	Atlanta Regional Commission
CTP	Comprehensive Transportation Plan
EMS	Emergency Medical Services
FHWA	Federal Highway Administration
GDOT	Georgia Department of Transportation
HERO	Highway Emergency Response Operator
ITE	Institute of Transportation Engineers
KPI	Key Performance Indicator
MPH	Miles Per Hour
MPO	Metropolitan Planning Organization
NACTO	National Association for City Transportation Officials
ROW	Right-of-way
SR	State Route
SS4A	Safe Streets and Roads for All
STIP	Statewide Transportation Improvement Program
TIP	Transportation Improvement Program
TSAP	Transportation Safety Action Plan
ULDC	Unified Land Development Code
USDOT	United States Department of Transportation

1 INTRODUCTION

The U.S. Department of Transportation (USDOT) Safe Streets and Roads for All (SS4A) program provides funding for comprehensive safety action plans, the program's basic building block to improve roadway safety.¹ Comprehensive safety action plans are required to include recommendations towards policy and process changes that improve safety, as well as location-specific project recommendations. This plan, the Henry County Transportation Safety Action Plan (TSAP), includes three sets of recommendations:

- Design and policy recommendations for five priority corridors,
- Engineering recommendations based on the Federal Highway Administration's (FHWA) Proven Safety Countermeasures and broadly applicable to the county's roadway network, and
- County-wide policy and behavioral recommendations.

The purpose of this report is to describe the four recommended county-wide policy areas and their associated detailed policy actions recommended as part of this TSAP. These recommendations were selected based on feedback from stakeholders and the public, as well as best practices in roadway safety from nationally recognized agencies and organizations such as FHWA, the National Association of Community Transportation Officials (NACTO), and the American Association of State and Highway Transportation Officials (AASHTO).

The recommendations in this report have been chosen because they are the most impactful for increasing transportation safety in Henry County and the cities of Hampton, Locust Grove, McDonough, and Stockbridge. It is recommended that Henry County formally adopt all the policies included in this report, starting with the detailed policy actions. The county should work with member jurisdictions to determine which recommendations require additional policy action at the municipal level.

The four county-wide policy recommendations identified in this report include:

- Complete streets,
- Updates to land use policy,
- Freight management, and
- First responder coordination and crash education.

Each policy recommendation includes a brief description of the policy's existing national, state, and regional context; examples of similar policies in peer jurisdictions; a detailed description of the policy recommendation; and actionable next steps for Henry County and partner jurisdictions to adopt the policy.

¹ USDOT. (2025). Comprehensive Safety Action Plans. <https://www.transportation.gov/grants/ss4a/comprehensive-safety-action-plans>.

2 COMPLETE STREETS

Streets connect people to different places across multiple geographies. Traditionally, streets in rural and low- to mid-density suburban areas are designed to optimize the movement of vehicle traffic. Complete streets are streets that are designed to provide safe access for all modes of roadway users regardless of age or ability. Complete streets should be context sensitive, which means they are designed with the transportation needs and existing land uses of the surrounding community in mind. Complete streets often incorporate elements such as wide sidewalks, designated (and sometimes protected) bicycle infrastructure, transit amenities, street furniture and greenery, and traffic calming elements. **Figure 2-1** below includes before-and-after examples of a complete street transformation in Santa Monica, CA.²

Figure 2-1. Complete Street Before and After

2.1 Complete Streets Policy Context

Historically, complete streets were a policy priority for the federal government, especially the USDOT and FHWA. The USDOT has previously collaborated with state transportation agencies and local governments to make sure that complete streets policies are implemented at least on a planning level and ideally at a statewide level. USDOT also integrated complete streets investments into programs that supported business and technology development, such as the Complete Streets Artificial Intelligence Initiative in the USDOT's Small Business Innovation Research Program. Complete streets are also aligned with the goals and priorities of the SS4A program by creating more accessible, safe, and multimodal streets.

The nationwide community planning advocacy organization Smart Growth America has dedicated programming for the advancement of complete streets policies across the country. The organization offers educational resources on the history, purpose, and application of complete streets, as well as training and guidance towards the adoption of complete streets policies. The National Association of City Transportation Officials (NACTO) is another advocacy organization that provides resources and guidance towards the adoption of complete streets policies. NACTO's Urban Street Design Guide includes principles and practices towards designing safer and more accessible streets

² Shu, S., Quiros, D. C., Wang, R., & Zhu, Y. (2014). Changes of street use and on-road air quality before and after complete street retrofit: An exploratory case study in Santa Monica, California. *Transportation Research Part D: Transport and Environment*, 32, 387-396.

for all transportation modes across the country. NACTO's and Smart Growth America's guidelines have been adopted by dozens of jurisdictions as the nationwide standard for complete streets.³

The Georgia Department of Transportation (GDOT) has an in-depth Complete Streets Design Policy in the agency's Design Policy Manual. GDOT's guidelines provide a baseline for the development of regional, county, and local complete streets policies, but GDOT encourages local transportation agencies to go beyond minimum standards to develop accessible and safe transportation options for all travelers.⁴ Developing complete streets is in line with GDOT's Statewide Strategic Transportation Plan to increase the overall health and prosperity of people and businesses that rely on Georgia's transportation system.

The Atlanta Regional Commission (ARC) adopted a Regional Workbook for Complete Streets in 2019. The document guides the development of complete streets policies for member jurisdictions, of which Henry County is one. The workbook presents types of interventions that are commonly used in complete streets, complete streets typologies for different land use densities, critical considerations for designing complete streets, and useful resources for member jurisdictions. **Figure 2-2** below is a rendering of a 5-lane complete street example from the ARC's Workbook.⁵

Figure 2-2. Five Lane Complete Street Example

2.2 Complete Streets in Henry County

Currently, neither Henry County nor the cities of Hampton, Locust Grove, McDonough, and Stockbridge have adopted complete streets policies. The county has recognized the need for a complete streets policy through previous transportation and safety planning efforts. The Henry County Comprehensive Transportation Plan (CTP) recommends that the county adopt a formal complete streets policy for new roadway alignments and road

³ Smart Growth America. (2025). Complete Streets. <https://smartgrowthamerica.org/what-are-complete-streets/>

⁴ Georgia Department of Transportation. (2024). Design Policy Manual.

<https://www.dot.ga.gov/partnersmart/designmanuals/designpolicy/gdot-dpm.pdf>

⁵ Atlanta Regional Commission. (2019). Regional workbook for complete streets. <https://cdn.atlantaregional.org/wp-content/uploads/arc-complete-streets-workbook-webview.pdf>

widenings to ensure that pedestrian and bicyclist infrastructure are always considered in capital improvement projects.⁶

2.3 Complete Streets in Peer Jurisdictions

Complete streets ordinances are formal codifications of complete streets principles into local law. In Georgia, Gwinnett County, Macon-Bibb County, and Athens-Clarke County are a few of the counties that have adopted complete streets policies. Gwinnett County's complete streets policy is high-level guidance for the Gwinnett County Department of Transportation to consider bicycle, pedestrian, and transit users of all ages and abilities for the design, construction, and maintenance of transportation projects. Gwinnett County's complete streets policy is only applicable to county-owned roads.⁷ Macon-Bibb County's complete streets ordinance is more in-depth than Gwinnett County's and includes the creation of a complete streets compliance committee, which is responsible for overseeing and ensuring implementation of the complete streets policy.⁸ Athens-Clarke County has a highly comprehensive and detailed complete streets policy that includes recommended design guidelines from national and local organizations such as NACTO's Urban Street Design Guide, GDOT's Complete Streets, safety guidance from FHWA, and bicycle and pedestrian design guidance from other trusted transportation organizations such as the Institute of Transportation Engineers (ITE) and AASHTO.⁹ These ordinances present Henry County with various starting points and degrees of detail for ordinance development based on the work of peer jurisdictions.

The High-Injury Network (HIN) and High Risk Network (HRN) were developed as part of the safety analysis tasks during the development of the Henry County TSAP. This analysis compares the HIN and HRN mileage to the total network mileage among different demographic classes to assess the risk of crashes. HIN and HRN corridors should be prioritized for complete streets once a countywide policy is adopted.

2.4 Complete Streets Policy Recommendation

It is recommended that Henry County expand on the countywide complete streets policy recommended in the CTP and provide member jurisdictions with guidelines or best practices that they can use to develop their own complete streets ordinances that are in line with jurisdiction-specific needs. The expanded complete streets policy should include the following elements:

- Clearly defined expectations for what makes a roadway a complete street (safe and accessible infrastructure for all modes and roadway users),
- A commitment to improving roadway accessibility and safety for all road users regardless of mode,
- Require complete streets for interior roadways and adjacent public roadways of all new development or redevelopment of properties
- Require complete streets in all right-of-way (ROW) and roadway construction, reconstruction, and repaving projects, or identify what other conditions complete streets intervention may be required,

⁶ Henry County Transportation Plan. Pond. 2022. p. 229. <https://content.civicplus.com/api/assets/1560dc01-e718-4a31-8c7dbd149984bfe9?cache=1800>

⁷ Gwinnett County Government. (2018). Complete Streets Policy. p. 239.

https://www.gwinnettcounty.com/static/upload/bac/52/20180904/ap_2018.09.04.Work.Session.Agenda.Package.pdf

⁸ Macon-Bibb County. (2021). Complete Streets Policy.

<https://static1.squarespace.com/static/5ed281ef3b87d766d1ca6fa3/t/60d2967fd8141f47c5bfbaf2/1624413824307/Complete+Streets+Policy+Legislation.pdf>

⁹ Athens in Motion Commission. (2022). Athens-Clarke County Complete Streets Policy.

<https://www.acgov.com/DocumentCenter/View/11362/Complete-Streets-Policy?bidId=%7E:text=The%20Complete%20Streets%20Policy%20is,%2C%20approval%2C%20and%20implementation%20process>

- Prioritize complete streets interventions on roads along the HIN and HRN,
- A menu of recommended safety- and accessibility-oriented roadway facilities, such as the Safety Countermeasure Toolkit developed as part of this TSAP, that streets may include,
- A county staff member, board, committee, or other body responsible for implementing the policy,
- Include context-sensitive and adaptable language to fit the specific needs of different corridors and their adjacent land use contexts, and
- Be the default policy unless complete streets present unreasonable limitations, and clearly define when exceptions need to occur, such as in instances where ROW acquisition is not possible.

Henry County has drafted a policy that includes these elements and will present the policy for adoption by the Board of Commissioners in its August 2025 meeting.

In addition to adopting a complete streets policy, Henry County should develop complete street design guidance utilizing the TSAP Engineering Toolkit and roadway design principles identified in this plan. The county and member jurisdictions can use this design guidance to effectively design and implement complete streets and advance the safety goals of this plan.

To accompany the complete streets policy, Henry County should help partner jurisdictions assess the location and quality of existing pedestrian and bicycle infrastructure. Much of this work has already been done in the CTP. Jurisdiction-specific pedestrian and bicycle studies can help identify critical gaps in the sidewalk and bicycle network, as well as address specialized issues such as sections of these amenities that are noncompliant with the Americans with Disabilities Act (ADA).

Funding complete streets projects depends on the availability of local, state, and federal funding. Historically, USDOT has had funding available for complete streets projects, but at the time of this report, the current federal transportation authorization will be expiring soon. GDOT and the ARC continue to sponsor complete streets projects as part of their mission, and there are funding opportunities available for complete streets projects at the state and local level, such as GDOT's Transit Trust Fund for projects that implement transit-oriented solutions. Road development will be the fiscal responsibility of the street owner but will require inter-organizational coordination when ROW is owned by multiple entities.

2.5 Complete Streets Next Steps and Action Items

The first step towards adopting a complete streets policy is to utilize this TSAP, the CTP, and other transportation resources in Henry County to determine the county's complete streets priorities and the elements to be included in the policy. Then, the county must adopt the policy with support from the Board of Commissioners. This is planned for September 2025.

Once the complete streets policy is adopted, Henry County can work with the cities of Hampton, Locust Grove, McDonough, and Stockbridge to develop jurisdiction-specific policies that comply with the county's policy. Henry County can also work to develop design guidance for context-sensitive complete street typologies based on the Engineering Toolkit presented in this TSAP.

3 UNIFIED LAND DEVELOPMENT CODE UPDATE

Henry County's Unified Land Development Code (ULDC) is the compendium for land and capital development policy and standards in the county. The ULDC includes standards for zoning and land use, transportation, natural resource management, housing, and building and health codes. The city-county joint comprehensive plan is the guiding document for implementing and evaluating the ULDC.

3.1 Unified Land Development Codes Policy Context

ULDCs are often adopted as part of a municipality's code of ordinances. They are expected to contain standards that maintain and promote public safety and quality of life. Cities typically update land development codes to reflect changes in comprehensive transportation and zoning plans.

The Georgia Planning Act is the enabling doctrine at the state level that allows municipalities to make decisions related to planning and community development. The provision of transportation systems is an enumerated duty and responsibility of local governments per the act.¹⁰ While the act includes references to transportation planning in general, it does not mention local governments' safety-related transportation duties or responsibilities, nor does it give local governments the authority to require developers to construct transportation facilities.

3.2 Unified Land Development Code in Henry County

Henry County's ULDC is adopted as an appendix item in the county's code of ordinances. While technically an appendix to the code, the ULDC has twelve chapters and its own appendices. While all ULDC chapters may be in some way relevant to transportation, Chapter 8 of the ULDC, *Infrastructure Improvements*, has a section specific to all transportation system standards in the county such as traffic impact study guidelines, design and construction standards for streets, parking, and utilities.

Unlike the county, municipalities in Henry County have roadway design standards integrated into sections of code that also include behavioral policies such as bicycle sidewalk riding. An in-depth assessment of safety-related policies and codes at the county and municipal level, including Henry County's ULDC, is included in the TSAP Plan and Policy Review.

3.3 Development Codes in Peer Jurisdictions

As roadway design and policymaking are context-sensitive, no single peer jurisdiction has a complete set of transportation design standards and safety policies that Henry County should try to emulate. However, many jurisdictions have adopted different safety-focused standards that Henry County could incorporate into its ULDC update in a way that is appropriate for the county's unique characteristics and challenges.

DeKalb County requires that sidewalks be constructed along all new and improved local residential and commercial construction, be at a minimum width of 5 feet in residential areas and 6 feet in commercial areas, include a grassy or landscaped strip between the sidewalk and curb, and provide ramps for accessibility. **Figure 3-1** on the next page is an example of a sidewalk that is compliant with such a policy.¹¹ DeKalb County also requires that all new or substantially improved roadways with speeds above 35 miles per hour (MPH) include bicycle lanes that are at least four feet wide and meet the most up-to-date AASHTO requirements.¹² In Washington State, the City of Seattle

¹⁰ O.C.G.A. 45-12-200, et seq., and 50-8-1, et seq.

<https://apps.dca.ga.gov/development/PlanningQualityGrowth/DOCUMENTS/Laws.Rules.Guidelines.Etc/GAPlanningAct.pdf>

¹¹ FHWA. (2021). Walkways. <https://highways.dot.gov/safety/proven-safety-countermeasures/walkways>

¹² DeKalb County, Georgia, Code of Ordinances § 14-383.

https://library.municode.com/ga/dekalb_county/codes/code_of_ordinances?nodeId=CODECO_CH14LADE_ARTIIISU_DIV4RE_IM_PT DST_S14-383SIBILA

lowered its citywide *prima facie* speed limits to 25 MPH, resulting in an 18% reduction in injury crashes.¹³ The TSAP Plan and Policy Review includes other, in-depth transportation policies from peer jurisdictions that Henry County could adapt to fit the county's needs.

Figure 3-1. Five-Foot-Wide Sidewalk with Buffer Example

3.4 Unified Land Development Code Policy Recommendation

It is recommended that Henry County update its ULDC to better incorporate design and policy standards that promote safety on the county's roadways and work closely with partner jurisdictions to update local transportation planning standards. Henry County should focus on updating the ULDC to reflect the following standards that promote safety for all road users:

- Require that all traffic impact studies include crash reduction and multi-modal safety considerations,
- Update stopping sight distance requirements based on the most recent AASHTO guidance (Green Book, 7th ed.),
- Increase the minimum sidewalk width to 5 feet in residential areas and at least 6 feet in pedestrian-heavy commercial areas,
- Lower the countywide *prima facie* speed limit to 25 MPH and add speed limit signage throughout high-traffic areas,
- Require that all roadway improvement projects include provisions for bicyclists, pedestrians, and transit users, as appropriate (see Complete Streets policy in **Section 2**),
- Require provision of safety countermeasures, such as those identified in this TSAP's Engineering Toolkit, to address safety considerations identified in traffic impact studies,
- Update new development and redevelopment access requirements to include the construction of an ADA-accessible sidewalks on both internal and site perimeter roadways where appropriate, and

¹³ Seattle Department of Transportation. (2020). Speed limit case studies.

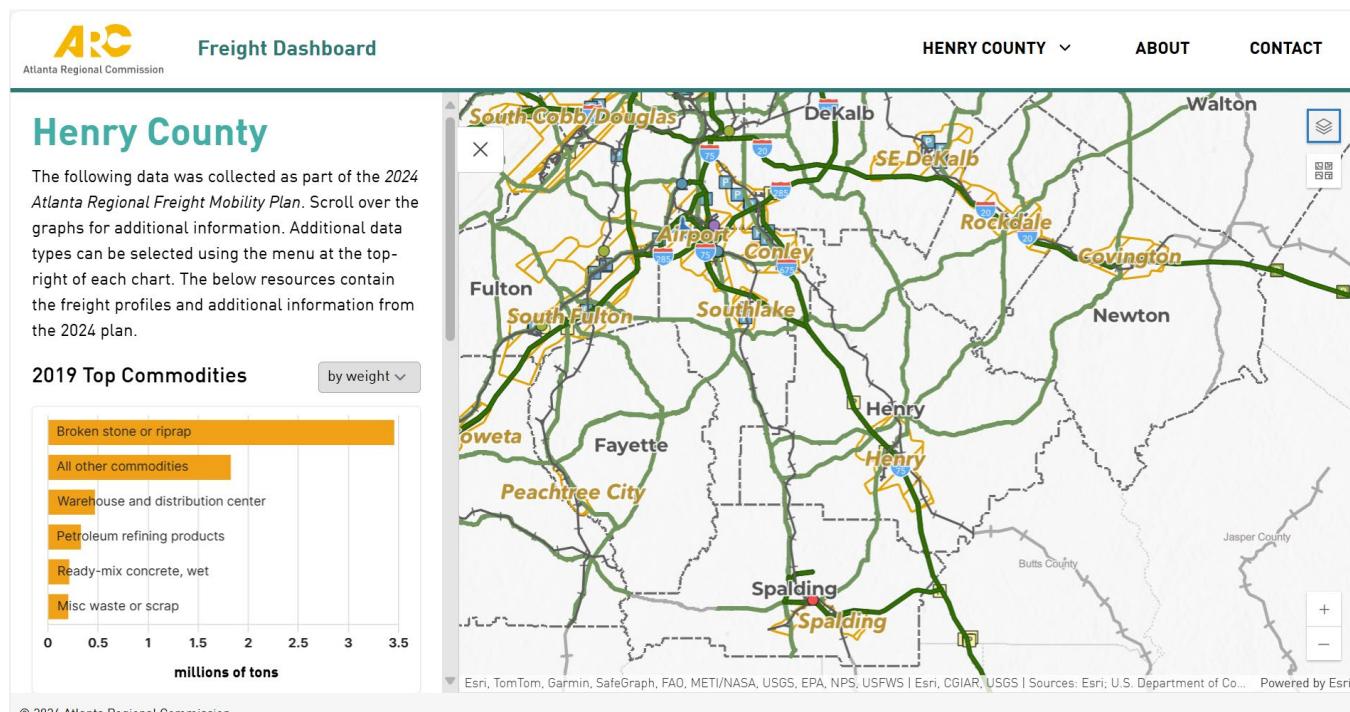
https://www.seattle.gov/Documents/Departments/SDOT/VisionZero/SpeedLimit_CaseStudies_Report.pdf

- Encourage developers to connect pedestrian and multimodal facilities within new developments or redevelopments with the existing or planned sidewalk network external and adjacent to the site.

While this list is not exhaustive, it provides a starting point for Henry County and member jurisdictions to ensure that their transportation design standards and usage policies promote safety and accessibility for all roadway users. Henry County can work with member jurisdictions to identify inconsistencies between transportation design standards across jurisdictions and work alongside city governments and planning departments to ensure that all municipal codes are consistent and up to date.

3.5 Unified Land Development Code Next Steps and Action Items

The first step towards achieving this recommendation is for Henry County and member jurisdictions to identify all codified transportation-related standards to understand where there may be gaps or inconsistencies across jurisdictions, especially in regard to providing safe transportation facilities. This work has already been started in the Plan and Policy Review for this TSAP, which can serve as a starting point for this assessment. Once these needs are assessed, the county can work with member jurisdictions to develop minimum standards for policies to facilitate safer roadways across the county. Henry County should also coordinate with GDOT to make sure that policies affecting state routes are codified appropriately.


4 FREIGHT MANAGEMENT

Freight management is a transportation and quality of life priority for Henry County and its member jurisdictions. Large trucks on local roads lead to traffic bottlenecks and safety concerns for drivers, pedestrians, and bicyclists. Truck traffic also increases wear and tear on road surfaces, leading to significant infrastructure deterioration.

4.1 Freight Management Policy Context

Because freight management requires the transport of goods across geographies, freight management policies are often developed by agencies larger than county governments, such as regional metropolitan planning organizations (MPOs), state departments of transportation, and even the federal government in some contexts. In Georgia, safety is a priority for freight management at the regional and state levels.

The ARC adopted the 2024 Atlanta Regional Freight Mobility Plan as an 8-year update to the 2016 Freight Plan. The 2024 update includes freight-specific design guidelines for ARC member jurisdictions that address topics such as roadway design, multimodal access, lighting, and traffic signals in freight-heavy areas.¹⁴ The 2024 plan also has a virtual dashboard to compare freight activity in the 21-county region. Henry County's freight dashboard is included in Figure 4-1 below. The dashboard shows freight routes in the county (green) and freight clusters (outlined in orange). The ARC's 2009 Atlanta Strategic Truck Route Master Plan includes design strategies to make roundabouts more truck-friendly while still maintaining safety and accessibility for other roadway users.¹⁵

Figure 4-1. ARC Freight Dashboard showing Henry County's Freight System

Most freight corridors in Georgia are state routes or interstate highways, which fall under GDOT's purview. GDOT released an updated Georgia Freight Plan in 2023 dedicated to modernizing the statewide freight network to attract and retain small businesses and revitalize rural communities. The Georgia Freight Plan includes a series of

¹⁴ Atlanta Regional Commission. (2024). Freight design guidelines. <https://cdn.atlantaregional.org/wp-content/uploads/arc-2024-arfmp-freight-design-guidelines.pdf>

¹⁵ Atlanta Regional Commission. (2009). Atlanta Strategic Truck Route Master Plan. <https://cdn.atlantaregional.org/wp-content/uploads/tp-astromap-finalreport-062210.pdf>

Key Performance Indicators (KPIs) to assess freight efficacy; one of these KPIs is safety, determined by the cost of crashes per vehicle mile traveled.¹⁶

4.2 Freight Management in Henry County

Henry County includes several major freight routes:

- I-75 traveling Northbound towards Atlanta and Southbound towards Florida,
- State Route (SR) 155,
- SR 81,
- SR 20, and
- Railroads through Hampton, Locust Grove, McDonough, and Stockbridge.

Freight management is a priority in Henry County, as the county was identified as an ARC-designated regional freight cluster. Freight is also a focus of the county's 2022 CTP. Several freight-related projects are identified in that plan, which are currently underway or soon to be underway, such as an arterial improvement with a focus on freight accommodation at Avalon Parkway/SR 81.

Members of the public at all in-person pop-up events during the development of this TSAP voiced concerns about increasing freight traffic in the county. Generally, people felt unsafe driving on roadways with heavy freight traffic.

4.3 Freight Management in Peer Jurisdictions

Both GDOT and ARC convened specialized freight management task forces to develop their respective freight management plans. The state of Georgia also has a statewide freight task force as part of its High Demand Career Initiatives (HDCI) program, which is dedicated to developing the state's freight workforce.

4.4 Freight Management Policy Recommendation

It is recommended that Henry County government coordinate with the Henry County Chamber of Commerce, ARC, and GDOT to develop a context-sensitive freight management strategy that is specific to the county. This strategy should be safety-focused and address the freight-related concerns of community members while preserving and strengthening supply chains that rely on commerce within and throughout the county. Like this TSAP, future freight management studies in the county should follow the Safe System Approach as the guiding paradigm towards roadway safety and should prioritize the safety of all roadway users as well as efficient freight and goods movement. To develop the strategy, the county should convene a Freight Management Task Force.

It is also recommended that Henry County explore opportunities for innovative freight management technologies and pilot programs to improve roadway safety along freight routes, such as connected vehicles, signal automation, and automated train terminal technology.

Finally, Henry County and plan partners should work closely with GDOT to distinguish freight-related crashes from other motor vehicle crashes in GDOT's AASHTOWare database. If a change to the state database is not possible, then the county and/or cities may be able to approximate freight-related crashes by comparing crash data from GDOT against county freight routes. For example, if crashes tend to concentrate along freight routes, then there could be a correlation between freight traffic and increased crashes.

¹⁶ Georgia Department of Transportation. (2023). Georgia Freight Plan.
<https://www.dot.ga.gov/InvestSmart/Freight/GeorgiaFreight/GeorgiaFreightPlan.pdf>

4.5 Freight Management Next Steps and Action Items

The first step towards the implementation of a countywide freight management strategy is for the county to convene a Freight Management Task Force or advisory committee that includes stakeholders from the chamber of commerce, GDOT, and railroad and trucking interests. The Freight Management Taskforce should also include stakeholders with safety interests, such as members of the Roadway Safety Stakeholder Committee. This taskforce should spend some time identifying the county's strengths, weaknesses, opportunities, and threats to freight management. Based on this assessment, the county should then begin to identify opportunities to deploy freight-related transportation projects and other safety initiatives.

5 FIRST RESPONDER COORDINATION AND CRASH EDUCATION

Emergency services such as police, fire, and emergency medical services (EMS) are always present at reported crash sites that result in death or serious injury. The ability for these organizations to quickly coordinate with each other and respond to the scene of a crash may mean life or death for those involved. These organizations are also responsible for sharing accurate and timely crash information with the media, public, and other stakeholders.

5.1 First Responder Coordination and Crash Education Policy Context

During the development of the TSAP, first responder coordination became an apparent issue in the county during meetings with stakeholders and at public meetings. Local police reports sometimes have discrepancies from GDOT's database when documenting crashes, which may be due to unfamiliarity with the application that GDOT utilizes to publish crash data. Post-crash care is an objective of the Safe System Approach, so it is critical to ensure that first responders at the city, county, and state levels are following the same protocol for reporting crashes so that crash data is consistent and accurate for future safety planning efforts.¹⁷

5.2 First Responder Coordination and Crash Education in Henry County

Several organizations are included in crash response in Henry County. First is the county's Emergency-911 (E-911) department, which receives 911 calls and determines which first responders to dispatch to the scene. On-scene first responders include public safety officers, firefighters, EMS, and traffic management teams if necessary. If a crash occurs on a state or interstate highway, GDOT may send its Highway Emergency Response Operator (HERO) team to maintain the flow of traffic and protect the scene of the crash from additional crashes.

5.3 First Responder Coordination and Crash Education in Peer Jurisdictions

First responder coordination is a policy priority in several adopted safety action plans. The Montgomery County, Maryland Vision Zero 2030 Action Plan includes policy recommendations for prompt medical service and planning and coordination for safe post-crash traffic management.¹⁸ The Chattanooga-Hamilton County-North Georgia Metropolitan Planning Organization's Comprehensive Safety Action Plan also includes policies to improve first responder timeliness and coordination in the event of a crash.¹⁹

Several jurisdictions utilize First Responder Safety Week in November as an opportunity to increase awareness around proper first responder coordination and post-crash care.

5.4 First Responder Coordination and Crash Education Policy Recommendation

It is recommended that Henry County implement enhanced training for law enforcement and emergency service personnel responsible for crash reporting to address the unique attributes required to accurately report crash circumstances involving people walking and bicycling and improve post-crash care.

One strategy that the county could use to better coordinate first responder post-crash care is to have regular meetings with representatives from county and city E-911 offices, public safety officers and firefighters, local EMS, and representatives from GDOT and local transportation departments. The Georgia Department of Public Safety also hosts a Crash Review Board; first responders in Henry County could attend these meetings to learn more about what is being done to address crashes at the state level. By attending these meetings, the county can ensure that local governments, county departments, and state-level agencies stay coordinated with each other.

¹⁷ National Traffic Highway Safety Administration Office of Emergency Management Systems. (2025). EMS, highway safety & post-crash care. <https://www.ems.gov/issues/ems-highway-safety-and-post-crash-care/>

¹⁸ Montgomery County, Maryland. (2023). Vision Zero: Our plan to eliminate fatalities and serious injuries on our roads by 2030. <https://zerodeathsmd.gov/wp-content/uploads/2023/02/MontgomeryCounty -Vision-Zero-2030-Action-Plan.pdf>

¹⁹ Chattanooga-Hamilton County Regional Planning Association. (2025). Safety in the region. <https://slrp-hub-chcrpa.hub.arcgis.com/pages/safety-in-the-region>

Open communication with state, county, and local EMS and on-scene first responders is key to effective post-crash care. There should be standardized and uniform protocols that all first responders should be aware of when dealing with fatal or serious injury crashes. In addition to training public servants, Henry County and partner jurisdictions can create educational resources for the public and media to understand the appropriate ways to react to and communicate about a fatal or serious injury crash. Elements of a transportation safety communications campaign may include:

- Work with media partners to report traffic crashes more accurately, to avoid victim blaming, and report crashes in the context of Vision Zero,
- Develop a region-wide safety campaign to share information with the community about traffic safety for all modes, and
- Develop branded TSAP signage to be deployed with safety-related infrastructure projects during construction.

5.5 First Responder Coordination and Crash Education Next Steps and Action Items

It is recommended that Henry County E-911, public safety, and fire departments first meet with local public safety and fire departments to understand the priorities and practices of different local first responders across the county. Next, the county should coordinate with GDOT and local hospital systems to determine HERO and EMS priorities and preferences for responding to and reporting crashes. Then, the county may convene a committee or task force to address first responder coordination and post-crash care policies, as well as develop county-specific post-crash training materials for first responders, the media, and the public.

6 SUMMARY

This report details four countywide policy recommendations oriented towards improving the general safety of roadways in Henry County. Policy recommendations were developed based on gaps in Henry County's existing policy landscape, suggestions from stakeholders and the public, and non-engineering interventions supported by crash data and safety analysis. These recommendations are designed to be implemented at the county level, but local jurisdictions are encouraged to adopt these policies, as necessary.

In addition to adopting these policies, it is recommended that Henry County and its jurisdictions adopt context-appropriate Vision Zero policies that are geared towards a significant reduction in crash injuries and fatalities. These policies are included in greater detail in the complete TSAP.

Henry County Complete Streets Policy

Adopted: September 3, 2025

RESOLUTION NO. 25-283

**A RESOLUTION OF THE HENRY COUNTY BOARD OF COMMISSIONERS ADOPTING A
COMPLETE STREETS POLICY**

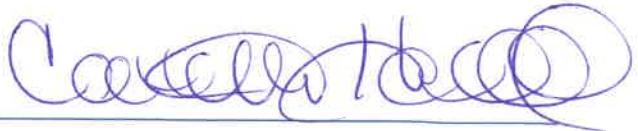
WHEREAS, a complete streets policy encourages the design and construction of roads for all road users including pedestrians, bicyclists, disabled and elderly people, as well as transit riders; and

WHEREAS, Henry County's roads historically focused primarily on the needs of automobiles while at times overlooking the needs of other modes of transportation; and

WHEREAS, Henry County needs to tackle its traffic congestion problem by promoting alternate modes of transportation and making its roads safer for all users; and

WHEREAS, such promotion of alternate modes of transportation, such as walking, biking, and riding public transportation, starts with the adoption of a complete streets policy that encourages design and construction of Henry County roads with all users in mind; and

WHEREAS, adoption of a complete streets policy and promotion of alternate modes of transportation will potentially make Henry County's roads safer for all by encouraging more walking and biking and reducing the number and frequency of auto-related crashes, fatalities, and injuries; and


WHEREAS, both the *Henry County Transportation Plan: 2022 Update* adopted on July 19, 2022 (Resolution 22-187) and the draft *Henry County Transportation Safety Action Plan* proposed for adoption on September 3, 2025, recommend the adoption of a complete streets policy; and

NOW, THEREFORE, BE IT RESOLVED THAT:

The Henry County Board of Commissioners hereby adopts the attached *Henry County Complete Streets Policy* encouraging the design and construction of Henry County roads going forward with all users in mind including but not limited to automobile and truck drivers, pedestrians, bicyclists, transit riders, children, adults, senior citizens, disabled individuals, and everybody else.

SO RESOLVED, THIS 3RD DAY OF SEPTEMBER 2025.

HENRY COUNTY BOARD OF COMMISSIONERS

BY:
Carlotta Harrell, Chair

ATTEST:

Stephanie Braun, County Clerk

HENRY COUNTY COMPLETE STREETS POLICY

VISION

Henry County shall be a place for individuals of all backgrounds to live and travel freely, safely, and comfortably. Every public right-of-way shall be planned, designed, constructed, and maintained such that residents of all ages and abilities have multi-modal transportation options to travel by foot, bicycle, public transportation, or automobile safely and conveniently to and from their destinations.

PRINCIPLES

The following guiding principles shall be considered throughout all phases of transportation infrastructure design, constructions, and maintenance:

- The policy directs decision makers to consistently design and maintain streets that accommodate all anticipated users including but not limited to pedestrians, bicyclists, public transportation users, people of all ages and abilities, freight haulers, motorists, emergency responders, and adjacent land users where possible and appropriate.
- Each phase in the life of a roadway, including planning, funding, designing, constructing, operating, and maintaining of new and modified streets, will be an opportunity to improve the integration of all transportation modes into the roadway.
- Accommodations for people riding bicycles and for people walking shall be integrated into new roadway construction and reconstruction projects in a manner that is appropriate to the context of the planned roadway features, surrounding land use, and desires of the community.
- The design and construction of new facilities shall anticipate likely demand for bicycling and pedestrian facilities within the design life of the facility.
- The design of intersections shall accommodate people riding bicycles and people walking in a manner that allows for safe crossing.
- Complete Streets may be achieved through single projects, incrementally through a series of smaller improvements, or through maintenance activities.
- The transportation network shall be planned and constructed as a well-connected system that encourages multiple connections to destinations.
- As feasible, Henry County shall incorporate complete streets infrastructure into existing public streets to create a comprehensive, integrated, and connected transportation network that balances access, mobility, and safety needs of all users of all ages and abilities and the needs of adjacent land users, thus providing a fully connected, integrated network that provides transportation options throughout the county. “Complete Streets Infrastructure” means design features such as: sidewalks; shared use paths; bicycle lanes; automobile lanes; paved shoulders; street trees and landscaping; planting strips; curbs; accessible curb ramps; bump outs; crosswalks; refuge islands; pedestrian and traffic signals, including countdown and accessible signals; signage; street furniture; bicycle parking facilities; public transportation stops and facilities; priority signalization; narrow vehicle lanes; raised medians; dedicated bus lanes; traffic calming devices such as traffic circles and traffic bumps; and surface treatments such as paving blocks, textured asphalt, and concrete.
- Not all roadways are suitable for complete streets treatment. In corridors whose primary purpose is to carry inter- and intra-regional traffic, for example, a limited range of modal accommodations may be appropriate. At a minimum, sidewalks shall be installed unless local conditions dictate otherwise.

- Planned and completed Complete Streets projects shall be tracked and made publicly available, including exemptions by the Henry County SPLOST Department and the Department of Transportation.
- Complete streets principles and practices shall be included in street construction, reconstruction, repaving, and rehabilitation projects except under one or more of the following conditions as determined by the SPLOST Transportation Project Director and/or Department of Transportation Director:
 1. The project involves a street or highway on which certain users, such as pedestrians or bicyclists, are prohibited by law, such as an interstate highway or a pedestrian mall.
 2. Routine maintenance of the transportation network is involved that does not change the roadway geometry or operations, such as sweeping, mowing, and spot repair.
 3. Where an equivalent project along the same corridor is already programmed to provide the needed infrastructure or facilities.
 4. Scarcity of population, travel, and attractors, both existing and projected into the foreseeable future, indicate an absence of need for such accommodations, or the street is outside an established existing bus transit route and where it is reasonably determined that a future bus transit route will not exist.
 5. The cost of complete streets accommodations is excessively disproportionate to the need or probable use. Construction may not be practically feasible or cost-effective because of significant or adverse environmental impacts to historic resources, streams, flood plains, wetlands, remnants of native vegetation, steep slopes, or other critical areas.

The SPLOST Transportation Project Director and/or Department of Transportation Director shall employ a checklist to document the complete streets analysis on each street project.

STRATEGIES

- Henry County will seek technical assistance, as necessary, in the development, implementation, and funding of complete streets policies, programs, and projects.
- Henry County shall develop a procedure to fund worthy complete streets projects with an emphasis on funding projects that provide high benefit at low cost.
- Complete Streets Elements shall be considered when Henry County develops, modifies, or updates its Comprehensive Plan, Unified Land Development Code, manuals, rules, regulations, and programs, as appropriate.
- Henry County shall continue to utilize design criteria and standards for streets infrastructure based upon recognized best practices in street design, construction, and operations including but not limited to the latest editions of American Association of State Highway and Transportation Officials (AASHTO), Institute of Transportation Engineers (ITE), and National Association of City Transportation Officials (NACTO).
- Henry County will apply context sensitive solutions to solve transportation problems in a manner consistent with community characteristics and as desired by local officials, citizens, and stakeholders.
- When possible, context sensitive streetscape plans that incorporate appropriate Georgia plants and landscaping materials shall be developed whenever a street is newly constructed, reconstructed, or relocated.
- Design standards shall include performance measures for tracking the progress of implementing the Complete Streets Policy and the Henry County Transportation Safety Action Plan as well as detail the procedures for granting exceptions. Performance measures may include, but are not limited to:

- Number of Crashes
- Injuries and Fatalities for all Modes
- Number of Countdown Signals
- Miles of Bike Lanes
- Miles of New Sidewalk Completed
- Number of Public Transit Riders
- Augmenting non-transportation projects, such as, storm water or private sector development, to concurrently implement complete streets principles shall be considered as a cost-effective means to achieve mobility enhancements.
- Henry County will implement complete streets concepts on appropriate local roads by, for example, augmenting resurfacing projects or other major construction activity, filling sidewalk gaps, ensuring transit stops on local roads are accessible, and resolving potential permitting issues early in the project development process.
- Implementation of the Henry County Complete Streets Policy will proceed as follows:
 - Henry County staff will make the Complete Streets Policy a routine part of everyday operations and shall approach all transportation projects as an opportunity to improve the transportation network for all users of all abilities and will work in coordination with all jurisdictions.
 - Henry County will maintain a priority list of all transportation improvement projects including those for problem intersections and roadways. Such priority projects shall be selected from the High-Injury Network and the High-Risk Network identified in the Henry County Transportation Safety Action Plan.
 - Henry County will continue to maintain a comprehensive network of bike and pedestrian infrastructure and identify key projects that will help to eliminate any gaps within that network.
 - Henry County will continue to train its staff in the Departments of Transportation, SPLOST, and Transportation Planning on best Complete Streets principles and practices.
 - Henry County will seek out appropriate funding sources for successful implementation of Complete Streets policies.

This page intentionally left blank

APPENDICES

**September
2025**

